При сопоставлении результатов измерений естественной гамма-активности по верхним нижним пластам создается впечатление, что основным источником изотопов радия являются пласты с подошвенной водой. По-видимому, на контакте нефти с водой содержание радия в воде существенно больше, чем в пластах, значительно удаленных от водонефтяного контакта. Например, на Арланском месторождении по диаграммам ГМ, зарегистрированным после выхода скважины из бурения, граница нефть-вода в пласте выделяется характерным максимумом интенсивности естественного гамма-излучения. Возможно, на этом месторождении существовали наиболее -благоприятные условия для адсорбции радиоактивных-элементов на границе нефти с водой. Содержание изотопов радия в зоне водонефтяного контакта должно возрастать на участках интенсивного движения подошвенной воды. Например, на Павловской площади до начала разработки залежи скорость фильтрации воды по пласту была больше, чем на Абдрахмановской и Южно-Ромашкинской площадях. Этим можно объяснить, почему по скважинам Павловской площади вероятность появления гамма-аномалий при заводнении коллекторов больше и интенсивность их выше по сравнению с данными, полученными по Абдрахмановской и Южно-Ромашкинской площадям.
По скважинам, эксплуатирующим пласты с подошвенной водой и обводняющимся вследствие поступления воды по затрубному пространству или прискважинной зоне коллектора, вероятность образования гамма-аномалий составляет 50%, т. е. меньше, чем в случае заводнения коллекторов в интервале нижних пластов.
Повышение естественной гамма-активности часто наблюдается в интервалах, которые не являются источником поступления воды в скважину. Гамма-аномалии, не совпадающие по глубине с интервалом притока воды в скважину, выделены по 158 скважинам, причем 32 скважины ко времени проведения измерений работали без воды. Из числа-рассмотренных скважин в 47 гамма-аномалии приурочены к работающему пласту, из которого в скважину поступает безводная нефть. В 47 скважинах гамма-аномалии выделяются в интервале пластов, вскрытых перфорацией, но эти пласты в работе скважины не участвуют. В остальных 64 скважинах отложение радиобарита отмечается в интервале неколлекторов.Из приведенных данных следует, что в 70% случаев повышение гамма -активности отмечается в интервалах, из которых нет притока жидкости в скважину (неработающие пласты и интервалы неколлекторов). В 30% случаев из пласта поступала безводная нефть, но в пределах этого коллектора выделяется гамма-аномалия. Возможно, в подобных случаях работает не вся мощность пласта и в неработающих интервалах происходит отложение солей радиобарита.
Анализ образования гамма-аномалий после определенного периода эксплуатации скважин показывает, что отложение солей радиобарита не по всем скважинам происходит в интервале заводняемого коллектора и в 40% рассмотренных скважин заводняемые коллекторы не выделяются повышением естественной гамма-активности.
1.3. Выводы
На основе всего выше сказанного можно сделать следующие выводы:
1. Радиогеохимический эффект наблюдается на границе нефть-вода в пласте. Таким образом, в нефтяном пласте содержание радиоактивных веществ повышается.
2. Вероятность появления гамма-аномалии при заводнении нижних пластов больше, чем при заводнении верхних пластов.
3. Интенсивность гамма-аномалий зависит от скорости фильтрации воды по пласту.
4. Аномальная радиоактивность часто наблюдается в пластах, которые не являются источниками поступления воды в скважину. Образование этих гамма-аномалий, по-видимому, связано с адсорбцией бария и радия из жидкости, движущейся по стволу, на участках обсадной колонны, подвергшихся коррозии, и на цементе за колонной в интервале пластов, вскрытых перфорацией.
5. Радиогеохимический эффект можно применять при исследованиях в интервале пластов, не вскрытых перфорацией.
Содержанием этой главы являются основные понятия и уравнения, и их решения, необходимые разработки теории на основе математической модели.
2.1. Уравнение неразрывности
В замкнутой изолированной системе полная масса остается постоянной, т.е. она не возникает и не исчезает сама по себе.
Закон сохранения массы означает, что для любого с поверхностью изменение массы в должно равняться количеству массы протекающему через .
Плотностью в точке пространства называют предел отношения массы в элементарном объеме этому объему, охватывающему точку , при стягивании его в эту точку, т.е.:
, |
(2.1) |
Тогда
, |
(2.2) |
где m - интегральный параметр, удовлетворяющий закону аддитивности, -локальный параметр.
Выделим в пространстве неподвижную замкнутую поверхность ограничивающую объем . Каждой точке выделенного объема сопоставим вектор .
Рис.3.
Выберем на поверхности ориентированный элемент поверхности, где – вектор внешней нормали, - площадь выбранной площадки.
Тогда через элемент площади входит или выходит количество массы сплошной среды , где – вектор потока массы.
Через всю поверхность войдет или выйдет количество массы
(2.3) |
Будем предполагать, что источники и стоки отсутствуют, тогда закон сохранения массы запишется в виде:
(2.4) |
В (2.4) знак минус в правой части объясняется тем, что если образует с острый угол, т.е., то проходит через изнутри наружу, т.е. масса в убывает.
(2.5) |
Уравнение (2.5) – уравнение неразрывности для массы в интегральной форме.
Проведем в первом интеграле (2.5) дифференцирование по как по параметру (поскольку не зависит от ), т.е. внесем производную под знак интеграла и заменим ее частной производную, поскольку подынтегральная функция зависит от переменной интегрирования, получим:
(2.6) |
Второй интеграл в равенстве (2.5) преобразуем в объемный, воспользовавшись теоремой Остроградского-Гаусса. Получим
(2.7) |
где
|
Подставим (2.6), (2.7) в (2.5), и объединяя интегралы получим
(2.8) |
Учитывая в (2.8) произвольность объема , получаем
(2.9) |
Уравнение (2.9)– уравнение неразрывности для массы в дифференциальной форме.
2.2. Закон Фика
Закон Фика необходим для описания диффузии растворенного(радиоактивного) вещества пропорциональной градиенту их плотности. Плотность радиоактивных примесей является функцией от химического потенциала
В уравнении (2.9) предыдущего параграфа вектор потока имеет вид
(*) |
где – конвекционная компонента вектора потока, связанная с потоком вещества (массы). Для случая, когда движение массы происходит только за счет конвекции, поток записывается в виде
(2.10) |
– диффузионная компонента, возникает при наличии в системе градиента концентрации. Для диффузионного компонента справедлив I Закон Фика:
(2.10*) |
– коэффициент концентрационной диффузии, (далее будем опускать).
Диффузионный поток пропорционален градиенту плотности, взятому с обратным знаком.
Подставим (2.10) и (2.10*) в (*), получим
(2.11) |
Подставим (2.11) в (2.9), получим
(2.12) |
В (2.12) каждое слагаемое записали отдельно:
|
Преобразуем второе слагаемое в (2.12):
(2.13) |
Во втором слагаемом в (2.13) осуществим круговую перестановку (знак не меняется, т.к. скалярное произведение).
Из выражения (2.13), получим
(2.14) |
Преобразуем второе слагаемое в (2.12):
|
Условие не сжимаемости жидкости:
(2.15) |
Подставив (2.14) и (2.15) в (2.12) получим
(2.16) |
Если в (2.16) то получим уравнение диффузии (II Закон Фика):
(2.17) |
2.3. Уравнение конвективной диффузии
Пусть имеется раствор с плотностью растворителя и плотностью растворенного вещества –, тогда плотность раствора запишется в виде
(2.18) |
Запишем уравнение неразрывности для растворителя:
(2.19) |
Диффузию не учитываем, потому что в жидкостях коэффициент диффузии мал.
Будем считать, что растворитель является несжимаемым, т.е. не зависит от пространственных координат и
(2.20) |
Тогда из выражения (2.19), получим
(2.21) |