Разработка теории радиогеохимического эффекта

Запишем уравнение неразрывности для раствора:

(2.22)

В (2.22) подставим (2.18), получим


Учитывая (2.20), (2.21) и независимость  от пространственных координат, получим

(2.23)

Опустим штрих, предполагая в дальнейшем  – плотность примеси.

(2.24)

Поясним в (2.24) значение каждого слагаемое:

Первое слагаемое  описывает изменение массового содержания в рассматриваемой точке;

Второе слагаемое  отвечает за конвекцию;

Третье слагаемое  отвечает за диффузию.

Физический смысл уравнения (2.24) заключается в следующем: изменение концентрации, со временем, в рассматриваемой точке происходит за счет конвекции и диффузии.

На практике в (2.24) слагаемым  можно пренебречь, в силу его малости.


2.4. Метод характеристик


Пусть движение несущей жидкости происходит вдоль оси , тогда уравнение без диффузионной конвекции запишется

.

(1)


Одномерное уравнение без диффузионной конвекции (или конвекционное уравнение).

 

Задача Коши для уравнения (1).

Требуется найти функцию , где  и удовлетворяющую условиям:

(2)

Получим решение задачи методом характеристик.

Метод характеристик заключается в переходе от эйлеровых переменных  и  к лагранжевым. Связь производных в эйлеровых и лагранжевых координатах записывается в виде:

.

(3)

Уравнение (1) таким образом можно записать как систему двух уравнений:

(4)


(5)

где уравнение (4) – уравнение для характеристик.

Из (5) следует, что , где  некоторая постоянная. Но т.к. , то .

Из (4) получаем

.

(6)

Равенство (6) – решение уравнений характеристик.

Интегральные линии уравнения (4) на мировой плоскости ,, т.е. графики движения частиц при заданной скорости , называются характеристиками уравнения (1).

Пусть при , , т.е.

;


.

(7)

Подставляя (7) в (2), получим

.

(8)

Для того, чтобы получить решение задачи Коши нужно решить систему двух уравнений:

,

(9)

.

(10)

Подставим уравнение (10) в (9), получим

.

(11)

Выражение (11) является решением задачи Коши для уравнения (1).

Решение (11) представляет собой волну бегущую вправо со скоростью .

Начально-краевая задача для уравнения (1) (смешанная задача)

,,,

(1)

.

(2)

.

(3)

Рис.4.


На рисунке 4 изображены характеристики уравнения (1), где при  начальное условие, а при  граничное условие,  граничная характеристика.

Для задачи Коши решенной ранее,

   

О

 а)

 

О

 б)

 Рис. 5

 (или ) (см. рис. 5) и влиять будет только начальное условие .

 Если  (), то будет влиять только граничное условие .

Получим решение для граничного решения.

(5)

Запишем уравнения (1) в виде

(6)


(7)

Из (6) следует, что , где .

Учитывая (3) получим .

Интегрируя (7) получаем

.

(8)

Пусть при ,  тогда

(9)

Разделим обе части (9) на  получим

.

(10)

При ,

.

(11)

Подставляя (11) в (3) получаем

.


Тогда решая систему


получаем решение граничной задачи в виде

.

(12)

В (12) .

Решение начально-краевой задачи будет иметь вид

,


где , единичная функция Хевисайда.

Решение задачи Коши для неоднородного конвекционного уравнения



Построим формулу Даламбера для уравнения

, ,

(1)

Уравнение (1) – уравнение эволюции локального параметра.

.

(2)

Тогда уравнение (1) запишем в виде системы двух уравнений:

(3)


(4)

Интегрируя (4), получим

(5)

Пусть при , , тогда

.


Подставим (5) в (3), получим

.


,

(6)

,

(7)

.

(8)


Исключим в (6)  для этого учтем начальное условие (7).

,


.

(9)


Подставим (9) в (6), получим

,


.

(10)


Исключим в (10)  и , потом :

.

(11)

Выражение (11) – формула Даламбера (решение задачи Коши для неоднородного конвекционного уравнения).

Покажем что (11) является решением (1).

Продифференцируем формулу (11) по , получим

.

(12)

Продифференцируем формулу (11) по , получим

.

(13)

Подставляя (13) и (12) в (1), получаем

.


Откуда получаем тождество: . Следовательно, выражение (11) является решением уравнения (1).



Начально-краевая задача для неоднородного конвективного уравнения

, ,

(1)

.

(2)

.

(3)

Найдем решение граничной задачи для неоднородного конвекционного уравнения (1).

Решение будем искать в виде дифференцируя которое по  , получим

.


Умножая правую и левую части на , приходим к выражению

.

(4)

Перепишем уравнение (1) в виде двух уравнений:

(5)


(6)

Из (6) следует, что . Пусть при , , тогда .

Откуда получим

.

(7)

Подставим уравнение (7) в уравнение (5), получим

.


(8)


(9)


(10)

Исключим в (8)  , для этого учтем граничное условие (9).


.


Подставим (11) в (8), получим

(12)

Исключим в (12) ,  и  получим

.


,

(13)

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать