АВМ – 10с
К РП3
473,31
541,11
473,31
600
676,38
4000
0,66
АВМ – 10с
К РП4
172,25
294,12
172,25
200
367,65
1600
0,66
А372ОБ
К РП5
127,62
167,11
127,62
200
208,88
1600
0,66
А372ОБ
К РП-6
403,66
597,82
403,66
600
747,27
4000
0,66
АВМ – 10с
К РП-7
149,2
205,37
149,2
400
256,71
1600
0,66
АВМ – 4с
К РП-8
385,38
921,1
385,38
400
1141
1600
0,66
АВМ – 4с
К лаб. корпус
141,94
163,12
141,94
200
203,9
1600
0,66
А372ОБ
К ПБК
106,89
206,87
106,89
200
258,58
1600
0,66
А372ОБ
К мех.мастерская
123,28
243,2
123,28
200
304
1600
0,66
А372ОБ
К ПБ
223,67
390,67
223,67
250
487,58
1600
0,66
А372ОБ
К ПР1
548,7
660,31
548,7
800
685,87
4000
0,66
АВМ – 10с
К ПР2
373,67
412,3
373,67
400
515,37
4000
0,66
АВМ – 10с
Вводные выключатели
2063,1
2971
2063,1
3000
3713,7
8000
0,66
АВМ – 20с
Секционный выключатель
2063,1
2971
2063,1
3000
3713,7
8000
0,66
АВМ – 20с
Условие выполняется. В распределительных пунктах ПР1 и ПР2 устанавливаем выключатели типа А-3700. Расчет уставок выключателей А-3700 аналогичен выше приведенному. Данные расчетов приведены в таблице 6.12.
Определяем расчетные токи продолжительных режимов.
А (6.19)
Определяем максимальный ток с учетом коэффициента перезагрузки
А (6.20)
Выбираем сечение алюминиевых шин по допустимому току, так как шинный мост, соединяющий трансформатор с КРУ, небольшой длины и находится в пределах подстанции. принимаем двухполосные шины 2(60´10) мм2; Iдоп = 2010 А.
По условию нагрева в продолжительном режиме шины проходят Imax= 1139 А < Iдоп = 2010 А.
Проверим шины на термическую стойкость по формуле
мм2, что меньше принятого сечения.
Проверим шины на механическую прочность. Определим пролет l при условии, что частота собственных колебаний будет больше 200 Гц.
(6.21)
откуда (6.22)
Если шины положены на ребро, а полосы в пакеты жестко связаны между собой, то по формуле:
J = 0,72b3h = 0,72 × 1 × 6 = 4,32 см4, (6.23)
тогда (6.24)
м.
Если шины на изоляторах расположены плашмя, то
см4 (6.25)
м2
l < 1,22 м.
Этот вариант расположения шин на изоляторах позволяет увеличить длину пролета до 1,22 м, т.е. дает значительную экономию изоляторов.
Принимаем расположение пакета шин плашмя, пролет 1,2 м, расстояние между фазами а=0,8 м.
Определяем расположение шин между прокладками по формуле:
(6.26)
(6.27)
где = 7× 106, модуль упругости материала шин;
см4 (6.28)
- коэффициент формы;
= 2b = 2 см.
Массу полосы mп на 1 м определяем по сечению g, плотности материала шин (для алюминия 2,7 × 103 кг/см3) и длине 100 см.
mп = 2,7 × 103 × 6× 1 × 100 = 1,62 кг/м,
тогда
м
м.
Принимаем меньшее значение = 0,51 м, тогда число прокладок в пролете равно
(6.29)
принимаем = 2.
При двух прокладках в пролете расчетный пролет равен
м (6.29)
Определяем силу взаимодействия между полосами по формуле:
Н/м (6.30)
где = 10 мм.
Напряжение в материале полос определяем по формуле
МПа (6.31)
где = момент сопротивления шины относительно оси, перпендикулярной действию усилия
см3 (6.32)
Напряжение в материале шин от взаимодействия фаз определяем по формуле:
МПа (6.33)
где - момент сопротивления пакета шин.
см3 (6.34)
МПа, что меньше sдоп = 75 МПа. Таким образом, шины механически прочны.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32