Тепловые и массообменные процессы




Относительная массовая концентрация бензойной кислоты в керосине









Относительная массовая концентрация бензойной кислоты в воде





Средняя движущая сила

процесса





Количество  переданного из фазы в фазу вещества М





Степень извлечения бензойной кислоты






Лабораторная работа

АБСОРБЦИЯ


Цель работы: практическое ознакомление с работой тарельчатого абсорбера, экспериментальное определение коэффициента массопередачи и сравнение его с рассчитанным теоретически.

Приборы и принадлежности: абсорбционная установка, бюретка для титрования; 0.1 N раствор соляной кислоты; индикатор-фенолфталеин; конические колбы.


Введение


Абсорбцией называют процесс избирательного поглощения газа из смеси газов (или пара из парогазовой смеси) жидким поглотителем. В абсорбционных процессах участвуют две фазы – газовая и жидкая. При абсорбции происходит переход вещества из газовой фазы в жидкую, обратный процесс называется десорбцией, при этом происходит переход вещества из жидкой фазы в газовую. Все процессы массопередачи обратимы, т.е. в зависимости от условий, направление перехода распределяемого вещества может быть различным. Равновесие в процессах абсорбции определяет состояние, которое устанавливается при продолжительном соприкосновении фаз и зависит от состава одной из фаз, температуры, давления и термодинамических свойств компонента и  поглотителя [1,2].

Для каждой конкретной системы газ-жидкость при определенной температуре и давлении существует строго определенная зависимость между равновесными концентрациями, т.е. каждому значению Х соответствует строго определенное равновесное значение У* и эту связь можно представить в виде функции

В общем случае эта зависимость находится опытным путем. Для большего числа систем имеются данные в справочной литературе. Для разбавленных растворов хорошо растворимых газов равновесная зависимость  хорошо описывается законом Генри, который имеет вид , где - константа фазового равновесия, величина которой зависит от природы газа и жидкости и единиц, в которых выражены концентрации.


ОС – линия равновесия         ; АВ – рабочая линия - прямая,проходящая  через точки (YH, XK) и (YK, XH)

Рисунок 1 - Схема процесса абсорбции


Примем расходы  фаз по высоте аппарата постоянными и выразим содержание поглощаемого газа в относительных мольных концентрациях. Обозначим: G – расход инертного газа, кмоль/с; YH ,YK -начальная и конечная концентрации компонента в газовой смеси, кмоль/кмоль инертного газа; L – расход абсорбента, кмоль/сек; его концентрации XH и XK, кмоль/кмоль  абсорбента.

Уравнение материального баланса абсорбера имеет вид

.

Выделим любое сечение в аппарате (рисунок 1), например, 1-1, в котором имеются рабочие концентрации X и Y. Напишем материальный баланс для верхней части аппарата по распределяемому компоненту

Если исходный абсорбент не содержит распределяемый компонент (XH = 0), то

.

Полученная зависимость называется уравнением рабочей линии.

Это уравнение позволяет нам определить значение рабочей концентрации в любой точке аппарата. Так как G, L – величины постоянные для каждого конкретного случая, то это уравнение прямой линии и для ее построения необходимо всего две точки. Можно взять вверху колонны  B (XH, YK) и внизу колонны A (XK, YH).

Разность между рабочей и равновесной концентрациями вещества в данной фазе называется движущей силой массопередачи  ΔY=Y – Y*.  Она  непрерывно  меняется  по высоте  аппарата.   В   частном   случае, когда линия равновесия является прямой, определяется как средняя логарифмическая величина из движущих сил массопередачи у концов аппарата

 ,

где ΔУб , ΔУм – большая  и меньшая разность рабочих и равновесных концентраций на концах аппарата .

Основное уравнение массопередачи для процесса абсорбции

где М – количество компонента, передаваемое через поверхность контакта фаз,  кмоль/с;

- поверхность контакта фаз, м2.

Так как поверхность контакта газа и жидкости зависит от скорости потока, физических свойств фаз и типа аппарата, то обычно расчеты тарельчатых абсорберов проводят по модифицированному уравнению массопередачи, в котором коэффициенты массопередачи относят к единице рабочей площади тарелки

,

где - коэффициент массопередачи, отнесенный к единице  площади тарелки, моль/м2(кмоль/кмоль)с;

F- суммарная рабочая площадь тарелок в абсорбере, м2;

,

где - рабочая площадь тарелке, м2;

n - число тарелок в абсорбере.

Рабочая площадь провальной тарелки может быть принята равной сечению абсорбера. Зная М – количество поглащенного аммиака (в кмоль/с), и рассчитав F и  можно определить коэффициент массопередачи        

.

Коэффициенты массопередачи определяют по уравнениям аддитивности  фазовых диффузионных сопротивлений

 


где βyf. βxf – коэффициенты массоотдачи, отнесённые к единице рабочей площади тарелки, соответственно в газовой и жидкой фазах, кмоль/м2 (кмоль/кмлоь)с.

При абсорбции хорошо растворимых газов <<, и в этом случае величиной m/βyможно  пренебречь, т.е. . Поэтому  при абсорбции аммиака водой можно  приравнять общий коэффициент массопередачи частному коэффициенту массоотдачи в газовой фазе.

1                   Требования безопасности


К работе на установке допускаются студенты, прошедшие в начале семестра инструктаж по технике безопасности в лаборатории
Б-011 и расписавшиеся в журнале инструктажей. Студенты обязаны перед началом работы надеть спецодежду и убрать волосы под косынку. Начинать работу можно только в присутствии учебного мастера и преподавателя, и только с их разрешения. Перед началом работы студенты должны отчитаться перед преподавателем о своей подготовке к работе.

При появлении запаха аммиака во время работы немедленно прекратить  его подачу, перекрыв  вентиль расхода, а расход  воды в абсорбер увеличить до полного  удаления запаха. В случае попадания раствора аммиака на кожу или в глаза немедленно обильное промывание широко раскрытого глаза водой или 0.5-1% раствором квасцов, наложить вазелиновое или оливковое масло. Необходимо помнить, что высокая концентрация аммиака в воздухе вызывает обильное слезотечение, боль в глазах, удушье, сильные приступы кашля, ПДК аммиака в воздухе – 20  мг/м3 . При отравлении аммиаком через дыхательные пути необходимо  вынести человека на воздух, вдыхание теплых  водяных паров,  пить теплое молоко с содой. По окончании занятия каждый студент обязан проверить и привести в порядок рабочее место.


2                   Описание установки и порядок выполнения работы


Абсорбер представляет собой колонну 1 с внутренним диаметром 0,2м, высотой 1,68м, выполненную из органического стекла (рисунок 2). В колонне установлены 4 тарелки провального типа с отверстиями 3,5мм, долей  свободного сечения 20%. В верхней части колонны имеется брызгоотделитель, внутри которого размещены распределитель жидкости и каплеотборник, уменьшающий унос жидкости уходящими газами. Колонна установлена на сборнике 2 диаметром 0.44 и высотой 0.7м. Установка снабжена баллоном с аммиаком 5, системой трубопроводов, арматурой и КИП.

Абсорбент (вода) подается в верхнюю часть колонны 1. Расход воды регулируется вентилями по показаниям ротаметра 10. Воздух к  установке подается от компрессора, расположенного в лаборатории Б-03, через коллектор 7. Скорость воздуха замеряется с помощью диафрагмы 8  и   соединенного  с  ней   дифманометра   9.   Аммиак    из   баллона 5 дросселируется редукционным  вентилем, расход NH3 определяется ротаметром 11. Аммиак поступает в коллектор 7, а затем в смеситель 6;  куда подается и воздух, а затем аммиачно-воздушная смесь подается вниз абсорбера 1. Смесь движется снизу  вверх, а сверху вниз по тарелкам стекает вода. На тарелках образуется газо-жидкостный слой. Вода поглощает абсорбтив (аммиак) и поступает в сборник 2. Воздух, содержащий газ, выбрасывается в атмосферу. В нижней части абсорбера находится пробоотборник для отбора пробы жидкости, поглотившей аммиак. Концентрация аммиакта в воде определяется титрованием пробы 0.1 HCℓ. Для определения гидравлического сопротивления на 2-х тарелках служит дифманометр 12.

При выполнении работы строго соблюдать очередность подачи. Сначала необходимо подать воду в абсорбер, установить заданный расход и поддерживать его постоянным. Затем подать воздух в колонну, установить и поддерживать постоянную его скорость в колонне и замерить перепад давления на 2-х тарелках. И только потом открыть редукционный вентиль и подать аммиак в абсорбер. Установить расход аммиака не более 10-20 делений по ротаметру, через 3-5 минут отобрать пробу жидкости внизу колонны и прекратить подачу аммиака,  затем воздуха и не ранее 10-15 минут закрыть вентили на линии подачи воды в абсорбер.

Все измеренные величины занести в таблицу.


1 – абсорбер; 2 – сборник; 3 – фильтр; 4 – гидрозатвор; 5 – баллон с аммиаком; 6 – смеситель; 7 – коллектор; 8 – диафрагма; 9 – дифманометр; 10,11 – ротаметры; 12 – дифманометр; В – вентили

Рисунок 2 - Схема  абсорбционной установки

3                   Обработка опытных данных


Таблица 1

Опытные и рассчитанные данные


Наименование величин

Значение

Среднее значение

1

2

3

Расход  воды; кмоль/с





Скорость воздуха в колонне; м/с





Расход воздуха в колонне; кмоль/с





Расход аммиака, кмоль/с





Перепад давления на 2-х тарелках; Па





Концентрация аммиака в исходной смеси





Концентрация аммиака в воздухе на выходе из колонны





Концентрация аммиака в воде на выходе из колонны





Движущая сила массопередачи





Коэффициент массопередачи
Kyf (опытный)





Коэффициент массоотдачи
βyf (расчетный)






Расходы воды, воздуха и аммиака необходимо выразить в мольных единицах. Концентрацию аммиака в воздухе        YH определяем исходя из расходов аммиака и воздуха в кмоль NH3/кмоль воздуха.

Конечная концентрация аммиака в воздухе YK рассчитывается  из уравнения материального баланса

.

Начальная концентрация аммиака в воде XH=0, так как вода, поступающая в абсорбер, аммиака не содержит аммиак.

Конечная концентрация аммиака в воде XK определяется титрованием отобранной пробы 0.1 н раствором HCℓ. Определив в результате титрования нормальность раствора, выразить  концентрацию поглощаемого газа в Cх [кмоль/м3] и пересчитать в относительные мольные  единицы по формуле


где Мж, МК – молекулярные массы воды и аммиака, кг/кмоль;

 ρж – плотность воды, кг/м3.

Расход воздуха в колонне определяется по уравнению расхода.

Рассчитав концентрации       YH, YK, XH, XK,   строим рабочую линию по 2 точкам (XH , YK), (XK, YH ).

Линия равновесия определяется по уравнению , где m=1.825 – найдена экспериментально для водных растворов NH3. Наносим рабочую и равновесную линии на график, определяем .  Зная количество поглощенного аммиака, определяем коэффициент массопередачи Kyf. Коэффициент массоотдачи βyf определяем из критерия Нуссельта диффузионного

,

где Д – коэффициент молекулярной диффузии компонента в газе, м2/с;

ℓ – характерный линейный размер, в данном случае ℓ =κ - капиллярная константа, м.


где  - поверхностное натяжение на границе газ -  жидкость, н/м .

Критерий Нуссельта диффузионный для провальных тарелок рассчитывается по уравнению           ,

где критерий Рейнольдса ;

критерий Прандтля  ;

критерий Вебера  .

Высота  столба жидкости на тарелке hст, рассчитывается  из гидравлического сопротивления орошаемой тарелки ΔРт, измеренного U-образным  дифференциальным манометром, м.

,

где ΔР сух – сопротивление сухой тарелки, Па;

ΔРσ-сопротивление тарелки, вызываемое силами поверхностного натяжения, Па;

ΔРг-ж - сопротивление газожидкостного слоя на тарелке, Па.

         Сопротивление сухой тарелки рассчитывается по уравнению

где ζ – коэффициент сопротивления тарелки (ζ=2.1);

ωо – скорость газа в отверстиях тарелки (ωо =ω/ƒсв),м/с;

ƒсв - свободное сечение тарелки (ƒсв=0.2).

 Сопротивление тарелки, вызванное действием сил поверхностного натяжения, определяют по уравнению

где dо – диаметр отверстий тарелки, м.

Сопротивление газожидкостного слоя принимают равным статическому давлению слоя

ΔРг-ж=gρжhст

Определив критерий Нуссельта диффузионный, рассчитывают βyf и сравниваем  Kyf и βyf.

Сделать вывод о сопоставимости полученных значений коэффициентов.

Список литературы


1.                 Дытнерский Ю.И. Процессы и аппараты химической технологии: Учебник для вузов. Изд. 3-е. В 2-х кн. / Ю.И.  Дытнерский. – М.: Химия, 2002. –кн.1. - 400 с.: ил. -кн. 2. -368 с.: ил.

2.                 Павлов К.Ф. Примеры и задачи по курсу процессов и аппаратов химической технологии. 9-е изд., пер. и доп. / К.Ф. Павлов, Н.Г. Романков, А.А. Носков. – Л.: Химия, 1981. - 560 с.

3.                 Руководство к практическим занятиям в лаборатории процессов и аппаратов химической технологии: Учеб. пособие для вузов. / Под. ред. чл.-корр. АН СССР П.Г. Романкова  - 6-е изд., перераб. и доп. – Л: Химия, 1990. - 272 с.: ил.


Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать