Водоснабжение города и промышленных предприятий

Общее количество отверстий на каждом фильтре при расстоянии между осями отверстий 0,25 м составит:

Количество отверстий, приходящихся на каждое ответвление 536/44=12шт  

При длине каждого отверстия lотв=(6-0,7)/2=2,65 м шаг оси отверстий на ответвлении бедет равен:

Высота фильтра:

                               Нф= hз + hпод.сл + hв + hдоп =1,1+0,5+2+0,5 = 4,1 м


где  hз – высота слоя загрузки, [1,табл.21];

hпод.сл – поддерживающий слой гравия, [1,табл.22];

hв – высота слоя воды под поверхностью загрузки, 2м;

hдоп – 0,5м;


5.5.6. Система для сбора и отвода промывной воды


Для сбора и отведения промывной воды устраиваются три желоба. Расстояние между осями желобов составляет 2 м [1,п.б.111]. Поперечное сечение желоба принимается: верхняя часть – прямоугольная, нижняя – треугольная.

Ширину желоба определяем по формуле:


                    


где  Кж – коэффициент , принимаемый равным для пятиугольного  желоба-2,1 [1,п.б.111];

qж – расход воды по желобу, м3/сек;

аж – отношение высоты прямоугольной части желоба к половине его ширины, от 1 до 1,5;

Определим число желобов: n = 6 / 2.2 = 3 шт ,тогда расстояние между осями желобов составит: 6 / 3 = 2 м ( рекомендуется не более 2,2 м)

Расход промывной воды, приходящейся на один желоб:


                    


Высота прямоугольной части желоба:  hпр = 0,75*B = 0,75*0,65=0,49 м

Полезная высота желоба:                        h = 1.25*B = 1.25*0,65 = 0,81 м

Конструктивная высота желоба ( с учетом толщины стенки) :

                     hк = h + 0.08 = 0,81 + 0,08 = 0,89 м. Скорость движения воды в желобе  v = 0,61 м/сек.

Высота кромки желоба над поверхностью фильтрующей загрузки при Н=1,5м и относительном расширении фильтрующей загрузки е = 30% по формуле:


                    

Расход воды на промывку фильтра:


                    


где Тр – продолжительность работы фильтра между двумя промывками, равная

                   Тр = Т0 – (t1+t2+t3) = 12-(0.1+0.33+0.17) = 11.4 ч

где  Т0 – продолжительность рабочего фильтроцикла, 8 –12 ч;

t3 – продолжительность сброса первого фильтрата в сток;

w – интенсивность промывки;

N – количество фильтров, 10 шт;


5.5.7. Расчет сборного канала

Загрязненная промывная вода из желобов скорого фильтра свободно изливается в сборный канал, откуда отводится в сток.

Поскольку фильтр имеет площадь f = 33м2 ‹ 40 м2, он устроен с боковым сборным каналом, непосредственно примыкающим к стенке фильтра. При отводе промывной воды с фильтра сборный канал должен предотвращать создание подпора на выходе воды из желобов.

Поэтому расстояние от дна желоба до дна бокового сборного канала должно быть не менее:


                    

  где  qкан – расход воды в канале , 0,495 м3/сек;

bкан – минимальная допустимая ширина канала, согласно [1,П.6.112] принимается 0,7 м;

Скорость движения воды  в конце сборного канала при размерах поперечного сечения fкан = 0,7*0,7=0,49 м2, составит vкан = qкан / fкан = 0,495/0,49=0,8 м/сек, что примерно отвечает рекомендуемой минимальной скорости, v = 0.8 м/сек.


5.5.8.. Определение потерь напора  при промывке фильтра


Напор, под которым подается вода для промывки фильтра, должна быть не менее:

                    

где   Нг – геометрическая высота подъема воды;

Нг = 4,5+0,7+1,1=6,3 м

где  1,5- высота загрузки;

0,7 – высота над поверхностью загрузки;

∑h – сумма потерь напора при промывки фильтра;

где  hр.с – потери напора в отверстиях труб распределительной системы фильтра;

где а– отношение суммы площадей всех отверстий распределительной системы к площади сечения коллектора, 0,25;

vкол – скорость движения воды в коллекторе в м/сек;

vр.т – то же, в распределительных трубах в м/сек;

hф – потери напора в фильтрующем слое, 1м;

hп.с – потери напора в гравийных поддерживающих слоях;

hп.т – потери напора в трубопроводе;

            hп.т = i*l =100*0,00649=0,65 м

                     при q = 435 л/сек, d = 600 мм и v = 1,77 м/сек гидравлический уклон i = 0,00649, общая длина трубопровода 100 м

hо.с – потери напора на образование скорости во всасывающем и напорном трубопроводах, 0,4 м;

hм.с – потери напора на местные сопротивления, 0,6 м;


5.5.9.Подбор насосов для промывки фильтра


Для подачи промывной воды в качестве 495 л/сек принято два одновременно действующих центробежных насоса марки 12НД с производительностью 720 м3/ч (200 л/с) каждый с напором 21 м, при скорости вращения n=960 об/мин. Мощность на валу насоса 48 кВт, мощность эл. двигателя 55 кВт, КПД насоса 0,87.

Кроме двух рабочих насосов принят один резервный агрегат.


5.5.10. Расчет отделения хлораторной


Для интесификации хода коагулянта и обесцвечивания, а также для улучшения санитарного состояния сооружений рукомендуется проводить хлорирование воды.

Доза первичного хлорирования Дх1 = 4 мг/л;

Доза вторичного хлорирования Дх2 = 1 мг/л;

Определим суточный расход хлора: расход хлора для предварительного хлорирования воды при Дх1 = 4 мг/л равен:


                    

расход хлора для предварительного хлорирования воды при Дх2 = 1 мг/л;

равен:        

Общий расход хлора равен 8,4+2=10,4 кг/ч, или 250 кг/сут

Помещение хлораторной разделено глухой стенкой на две части (хлора торная и аппаратная) с самостоятельными запасными выходами наружу из каждой

В хлораторной  устанавливают три вакуумных хлоратора ЛОНИИ-100 производительностью до 10 кг/ч с газовым измерителем. Два хлоратора являются рабочими, а один служит резервным.

В аппаратной кроме хлораторов устанавливаются три промежуточных хлорных баллона. Они требуются в больших установках для задержания загрязнений перед поступлением хлорного газа в хлоратор из расходных хлорных баллонов. 

Число расходных хлорных баллонов:


nбак=Qхл/Sбак=10,4/0,5=21 шт.

где  Sбак=0,5 – 0,7 кг/ч - съем хлора  с одного баллона без искусственного подогрева  при температуре воздуха в помещении 180С.

Для уменьшения количества расходных баллонов в хлораторной устанавливаются стальные бочки – испарители диаметром D=0,746 м и длиной L =1,6 м. Такая бочка имеет емкость 500 л и вмещает до 625 кг хлора. Съем хлора с 1 м2 боковой поверхности бочек составляет Sхл=3 кг/ч. Боковая поверхность бочки при принятых выше размерах составит 3,65 м2.

Таким образом, съем хлора с одной бочки будет


qб=Fб*Sхл=3.65*3=10.95 кг/ч

Для обеспечения подачи хлора в количестве 15,83 кг/ч нужно иметь 10,4/10,95=1 бочки испарителя. Чтобы пополнить расход хлора из бочки, его переливают из стандартных баллонов емкостью 55 л, создавая разрежение в бочках путем отсоса хлор газа эжектором. Это мероприятие позволяет увеличить съем хлора до 5 кг/ч с одного баллона и, следовательно, сократить количество одновременно действующих расходных баллонов до 10,5/5 2 шт   

Всего за сутки потребуется баллонов с жидким хлором:

250/55=5 баллона

где: 55 л – объем одного баллона

В помещении хлораторной предусматриваются резервные баллоны в количестве 50% суточной потребности т.е. 2 баллона.

Основной запас хлора хранится вне очистной станции, на расходных складах, рассчитанных на месячную потребность в хлоре.


n=250*30/55=136 баллонов

Доставка баллонов с расходного склада на очистную станцию производится автомашиной.

Вентиляцию хлораторной и склада предусматриваем общеобменную с 12 – ти кратным обменом воздуха в час.

Загрязненный воздух отсасывается из нижней зоны через подпольные каналы с решетками и выбрасывается в атмосферу через шахту, возвышающуюся на 5 м над крышей здания.


5.5.11. Расчет сооружений повторного использования воды.


Принято повторное использование промывной воды фильтров с кратковременным отстаиванием ее в аккумулирующих емкостях, предназначенных для приема залповых сбросов.

На одну промывку фильтра расход воды составляет:


q=F*ω*60*t1=33*15*60*7=208м3


где, t1 – продолжительность промывки, 7 мин;

Следовательно приняты две аккумулирующие емкости по 210 м3 каждая.

Полагая, что повторно используется 80% промывной воды, а 20% воды сбрасывается с осадком в сток, определяем параметры насосной установки:

а) насос для перекачки осветленной воды на очистные сооружения:


где  t – продолжительность перекачки, 30 мин=0,5ч [12, табл.43];

б) насос для перекачки шламовой воды из резервуара в канализацию:


где  t – продолжительность перекачки, 15 мин=0,25ч [12, табл.43];

Для выполнения обеих операций принимаем четыре обнотипных насоса ( три рабочих и один резервный) марки 12Д-19-60 производительностью по 150 л/с, напором 15 м, скоростью                  вращения 1450 об/мин и КПД 0,8.






9.5.12. Песковое хозяйство.


Кварцевый песок, используемый в качестве загрузки фильтра, должен быть очищен от примесей и иметь определенный гранулометрический состав.

В установках пескового хозяйства предусматривается подготовка карьерного песка для первоначальной загрузки фильтров, так и для ежегодной его догрузки в размере 10% общего объема песчаного фильтрующего материала.

Объем песка,загружаемого в фильтры перед пуском станции из восьми фильтров площадью по 33 м2 каждый и высотой фильтрующего слоя 1,2 м составит:

Wn=8*1.2*33=290 м3

Готовая потребность в дополнительном песке (10%-ная догрузка):


Wд=290*0,1=29,0 м3

Принимаем, что в карьерном сырье содержит 55% песка, пригодного для загрузки фильтра.


Тогда потребность в карьерном сырье перед пуском станции будет:


а годовая потребность в песке для его дозагрузки в фильтры:


Песковая площадка принята асфальтированная с размером в плане 26Х20 м.


Глава 6. Водопроводная сеть и водоводы

6.1. Общие сведения

Трассировка водопроводной сети обусловлена выполнением следующих основных правил:

1.     Водопроводная сеть должна равномерно охватывать всех потребителей воды.

2.     Сети водопровода должны иметь возможно наименьшую строительную стоимость, для чего подачу воды в заданные точки необходимо производить по кратчайшим направлениям, с тем чтобы обеспечить наименьшую длину водопроводных сетей.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать