Перед заполнением агрегата маслом и фреоном воздух из него удаляют тщательным вакуумированием до давления порядка 0,1 мм рт. ст.
Наличие в холодильном агрегате воды даже в самых малых количествах (15 – 20 мг) может серьезно нарушить его работу или вывести из строя. Вследствие плохой растворимости воды во фреоне она может замерзнуть в капиллярной трубке и прекратить поступление фреона в испаритель. Кроме того, вода вызывает порчу масла, коррозию деталей агрегата, особенно клапанов компрессора, разложение изоляции обмоток электродвигателя, засорение фильтра и т. п. Влагу из агрегата при изготовлении или ремонте удаляют путем тщательной сушки как масла и фреона, так и всего собранного агрегата. Перед сушкой все узлы агрегата обезжиривают, так как оставшееся на поверхности деталей масло при температуре свыше 100 °С пригорает, образуя прочную пленку.
Сушат холодильные агрегаты в специальных сушильных шкафах, продувая сухим воздухом. При этом вода, попавшая в агрегат, превращается в пар, который затем удаляется сухим горячим воздухом и вакуумированием.
Механические примеси, попавшие в агрегат извне или образовавшиеся в нем, могут засорить капиллярную трубку и нарушить тем самым нормальную циркуляцию хладагента. Вредное влияние попавших в холодильный агрегат влаги и механических примесей устраняется осушительным патроном и фильтром.
Надежность и долговечность работы компрессионного холодильного агрегата во многом зависит от обеспечения указанных требований. Поэтому изготовление компрессионных холодильных агрегатов требует высокой технической культуры производства.
Выполняя роль холодильной машины, холодильный агрегат бытового холодильника должен обеспечить требуемый уровень охлаждения в течение длительного времени. Для этого он должен иметь холодопроизводительность Q0, которая при цикличной работе должна быть больше суммы теплопритоков в холодильную камер за одно и то же время, т. е. должно иметь место неравенство Q0 > SQ.
Цикличность работы холодильного агрегата характеризуется коэффициентом рабочего времени b, который определяется отношением времени работы агрегата в цикле (от включения до выключения) к времени цикла (от включения до следующего включения агрегата в работу).
Очевидно, чем больше коэффициент рабочего времени, тем больше будет износ трущихся пар в компрессоре и тем меньше будет долговечность холодильного агрегата. С увеличением коэффициента рабочего времени увеличивается и расход электроэнергии на единицу емкости холодильной камеры. Поэтому при проектировании новых: холодильников величиной b можно задаться, исходя из условия обеспечения требуемой долговечности и экономичности.
С учетом цикличной работы холодильного агрегата при стационарных температурных условиях работы холодильника имеет месте соотношение SQ = bQ0 из которого следует, что при заданной величине коэффициента рабочего времени требуемая холодопроизводительность холодильного агрегата определяется суммой теплопритоков в холодильную камеру в единицу времени.
1.2Физический принцип действия
Охлаждением называют процесс понижения температуры охлаждаемого тела. Понизить температуру вещества можно путем уменьшения его внутренней энергии. Поэтому для искусственного охлаждения создают такие условия, при которых тепловая энергия (тепло) отводится от охлаждаемого тела (охлаждаемой среды) и воспринимается другим, более холодным телом. Для длительного охлаждения необходимо, чтобы восприятие тепла охлаждающим телом происходило без повышения его температуры, так как иначе температуры обоих тел (охлаждаемого и охладителя) станут одинаковыми и охлаждение прекратится. Таким свойством обладают тела при некоторых изменениях своего состояния, например, твердые тела могут воспринимать внешнее тепло без повышения своей температуры при плавлении или таянии; жидкие — в процессе испарения или кипения.
В основе современных промышленных способов охлаждения лежат процессы испарения или кипения, плавления или таяния и сублимации. Все эти процессы протекают с поглощением тепла из окружающей среды.
При переходе тела из твердого состояния в жидкое (плавление или таяние) тепло, воспринимаемое им извне, затрачивается на изменение связей между молекулами вещества, на ослабление сил его молекулярного сцепления. Когда тело переходит из жидкого состояния в парообразное (испарение или кипение), тепло расходуется также на преодоление сил молекулярного сцепления жидкого тела и работу его расширения. В случае перехода тела из твердого состояния непосредственно в газообразное (сублимация), тепло расходуется на преодоление сил сцепления молекул вещества и внешнего давления, препятствующего этому процессу.
На свойстве тел поглощать внешнее тепло при плавлении или таянии основано охлаждение льдом и льдосоляными смесями.
Охлаждение посредством поглощения внешнего тепла при кипении летучих жидкостей осуществляется холодильными машинами. Свойство тел поглощать внешнее тепло при их сублимации используется для охлаждения так называемым сухим льдом. Наиболее распространенным в настоящее время является охлаждение холодильными машинами.
Более широкое применение получили различные способы машинного охлаждения.
Простейшим из таких способов является способ дросселирования сжатых газов. Если газ при температуре окружающей среды подвергнуть сильному сжатию, а затем обеспечить процесс адиабатического расширения при резком понижении давления, то температура газа понизится и его можно использовать в качестве охладителя
Однако получение низких температур таким способом связано с большими энергетическими затратами.
Одним из способов машинного охлаждения является охлаждение вихревым эффектом. Этот способ осуществляется в вихревой трубке Ранка, представляющей собой цилиндрическую трубку небольшой длины, внутренняя полость которой разделена на две полости диафрагмой с центральным отверстием. Через сопло, расположенное в непосредственной близости от диафрагмы и направленное по касательной к внутреннему диаметру, в трубу подается сжатый воздух температуры окружающей среды. При завихрении воздуха в центре трубы создается разряжение и соответственно понижается температура. Холодный воздух с tх через отверстие диафрагмы выходит в охлаждаемую среду. Значительная часть кинетической энергии завихрения воздуха расходуется на трение в его внешних слоях, вследствие чего воздух в этих слоях нагревается.
Нагретый до температуры воздух выходит в окружающую среду через регулировочный дроссельный вентиль.
Температура холодного и горячего потоков воздуха зависит от конструкции и параметров трубки, от начальных параметров поступающего воздуха (его влажности, температуры и давления), от соотношения масс потоков, регулируемых дроссельным вентилем. При работе вихревой трубки на сухом воздухе с начальным давлением 0,5 мН/м2, температурой 20°С и массовой доле холодного потока 0,3-0,35 температура холодного потока может достигать 50°С.
Однако, низкая экономичность термодинамических процессов, происходящих в вихревой трубке, вследствие их необратимости и значительных потерь на трение, ограничивает практическую возможность использования вихревого эффекта в бытовых холодильниках.
В настоящее время наибольшее распространение в бытовой холодильной технике получили так называемые паровые холодильные машины (агрегаты) компрессионного и абсорбционного действия. В качестве рабочего вещества в них используют жидкости, кипящие при отрицательных температурах.
Принцип действия основан на том, что теплота охлаждаемой жидкости передается жидкому хладагенту и расходуется на его парообразование при отрицательной температуре. Пары хладагента подаются в теплообменный аппарат, расположенный в окружающей среде, где они отдают поглощенное тепло и превращаются в жидкость.
Жидкий хладагент вновь возвращается в охлаждаемую среду и этот круговой процесс повторяется.
Таким образом, в этих холодильных машинах рабочее вещество не расходуется, а только циркулирует в герметичной системе, изменяя свое агрегатное состояние. Это позволяет получать необходимое охлаждение в течение длительного времени при небольшом количестве рабочего вещества.
Принципиальное отличие компрессионных паровых холодильных машин от абсорбционных машин заключается в том, что во-первых циркуляция рабочего вещества осуществляется при работе компрессора, а во вторых вследствие процесса абсорбции и работы термонасоса.
Все более широкое применение получает термоэлектрическое охлаждение, основанное на явлении Пельтье.
Сущность явления заключается в том, что при пропускании постоянного тока через цепь, состоящую из термоэлементов, одни спаи охлаждаются, поглощая тепло из окружающей среды, а другие нагреваются, отдавая тепло окружающей среде.
Таким образом, роль хладагента в термоэлектрическом холодильнике выполняет электрический ток, который переносит тепло от холодных спаев к горячим.
Простота процесса охлаждения, а соответственно, и конструкции термоэлектрических холодильников делают термоэлектрическое охлаждение весьма перспективным для применения в быту.
Кроме перечисленных способов искусственного охлаждения имеются и другие способы, но они не имеют практического применения в холодильниках бытового назначения.
1.3.Классификация
Современные бытовые холодильники и морозильники — это сложные бытовые приборы, работающие в специфических условиях — в жилых (кухонных) помещениях, поэтому к ним предъявляют высокие требования: функционирование в автоматическом режиме, пользователь, если и выполняет, то только простейшие операции по уходу за ними; минимальный уровень шума; высокий уровень надежности; полная безопасность функционирования; возможно малые габаритные размеры при определенной полезной вместимости, небольшая стоимость и малые эксплуатационные расходы.
По типу холодильной машины бытовые холодильники бывают компрессорными (охлаждаемые компрессорной холодильной машиной), абсорбционными (охлаждаемыми абсорбционной холодильной машиной) и полупроводниковыми (охлаждаемые полупроводниковыми батареями), а морозильники — компрессорными и абсорбционными.
Компрессорные холодильники составляют значительную долю в ассортименте бытовой холодильной техники — свыше 90 %.
По способу установки холодильники подразделяются на напольные, настенные и встроенные.
Напольные холодильники, устанавливаемые на полу помещения, являются самым массовым типом холодильников и в нашей стране и за рубежом. Среди них можно выделить модели, выполненные в виде столика; высота их такая же, как и кухонных столов — 850 мм, а сверху имеется изготовленная из специального вида пластика сервировочная поверхность для размещения кухонной утвари и продуктов. Настенные холодильники, подвешиваемые к стене помещения, не занимают площади пола, что важно для малогабаритных квартир
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12