Многомерный регрессионный анализ

Многомерный регрессионный анализ

Содержание:


Содержание:.................................................................................................................................... 1

Вступление................................................................................................................................... 2

Теоретическая часть..................................................................................................................... 3

Многомерный корреляционный анализ................................................................................... 3

Многошаговый регрессионный анализ.................................................................................... 4

Многомерный регрессионный анализ...................................................................................... 5

Метод отсева факторов по t-критерию.................................................................................... 9

Практическая часть.................................................................................................................... 10

Вариационные характеристики.............................................................................................. 10

Корреляционный анализ........................................................................................................... 14

Многомерный регрессионный анализ.................................................................................... 15

Многошаговый регрессионный анализ.................................................................................. 16

Начальный корреляционный анализ................................................................................................................................. 17

Приложение: Олимп курсовая итог...................................................................... 21

Использованная литература:................................................................................... 30

 


























Вступление


Для достоверного отображения объективно существующих в экономике процессов необходимо выявить существенные взаимосвязи между ними. В естественных науках часто речь идет о функциональной связи, когда каждому значению одной переменной соответствует вполне определенной значение другой. В экономике в большинстве случаев между переменными величинами существуют зависимости, когда каждому значению одной переменной соответствует не какое-то определенное, а множество возможных значений другой переменной. Такая зависимость получила название стохастической.

Частными случаями стохастической связи являются корреляционная и регрессионная связи.

Две случайные величины имеют корреляционную связь, если математическое ожидание одной из них изменяется в зависимости от изменения другой. Метод математической статистики, изучающий корреляционные связи между явлениями, называется корреляционным анализом. Основной его задачей  является выявление связи между случайными переменными и оценка ее тесноты.

Но не все факторы, влияющие на экономические процессы, являются случайными величинами. Поэтому при анализе экономических явлений обычно рассматриваются связи между случайными и неслучайными величинами. Такие связи называются регрессионными, а метод математической статистики, их изучающий, называется регрессионным анализом. Кроме того, при изучении экономических процессов необходимо не только выявить связь между переменными, но и изучить и установить ее форму, что и является основной задачей регрессионного анализа.

Поэтому, как видно из  написанного выше, многомерный регрессионный анализ, изучению экономических процессов с помощью которого и посвящена настоящая работа, будет гораздо подробнее и точнее при включении в него необходимых элементов корреляционного анализа.

































Теоретическая часть.


Многомерный корреляционный анализ

 

В многомерной модели корреляционного анализа (с четырьмя и более переменными) вычисление частных и множественных коэффициентов корреляции основывается  на использовании матрицы коэффициентов парной корреляции.

Порядок частного коэффициента корреляции определяется количеством фиксируемых переменных. Выборочный частный коэффициент корреляции любого порядка можно определить по формуле


 

Это выражение предполагает вычисление большого числа выборочных частных коэффициентов корреляции от нулевого до (к-3)-го порядка, что является достаточно трудоемкой операцией.

Более удобным является вычисление частных коэффициентов корреляции по следующей схеме.

На основе матрицы выборочных коэффициентов парной корреляции


  (1)

 

где Q – симметричная положительно определенная матрица, имеем


 (2)

 

  (3)

 

и так далее, где

Dij – определитель матрицы, образованной из матрицы (1) вычеркиванием i-ой строки и j-го столбца для каждого определителя соответственно.

Для проверки значимости частного коэффициента корреляции используется величина t, имеющая t-распределение Стьюдента с числом степеней свободы =n-l-2:


,  (4)


где n – число наблюдений;

l – число фиксированных переменных;

rчаст – соответствующий выборочный частный коэффициент корреляции.

С помощью таблицы распределения Стьюдента по уровню значимости a и =n-l-2 находится tкр. При tн >tкр гипотеза Но:rчаст = 0 отвергается.

Доверительный интервал для частных коэффициентов корреляции строится при помощи z-преобразования Фишера


, аналогично рассмотренным ранее случаям.

Для определения тесноты связи между зависимой переменной и совокупностью объясняющих переменных используется выборочный коэффициент множественной корреляции, определяемый по формуле


,   (5)


где D – определитель матрицы выборочных коэффициентов корреляции;

Dii – алгеброическое дополнение к элементу rii.

Для проверки значимости коэффициента множественной корреляции используется величина


,   (6)

имеющая F-распределение с 1=l и =n-l-2 степенями свободы.





















Многошаговый регрессионный анализ.


Очевидно, что простое поверхностное  изучение данных не позволяет обнаружить, какие факторы, рассмотренные на стадии статистического анализа исходной информации, являются существенными, а какие – нет. Может случиться, что якобы отсутствующая корреляция с данным фактором обнаруживается после того, как связь с другим фактором уже исключена.

Необходимо найти оптимальный вариант модели, отражающий основные закономерности исследуемого явления с достаточной степенью статистической надежности.

В модель должны быть включены все факторы, которые с экономической точки зрения оказывают влияние на зависимую переменную (в нашем случае – средняя продолжительность жизни). При невыполнении этого требования модель может оказаться неадекватной вследствие недоучета существенных факторов.

С другой стороны, количество факторов, включаемых в модель, не должно быть слишком большим. Невыполнение этого требования приводит к необходимости увеличения числа наблюдений, к невозможности использования достаточно сложных зависимостей, к снижению точности оценок, к сложности интерпретации модели и к трудности ее практического использования.


Таким образом, возникает задача уменьшения числа переменных, включаемых в модель, без нарушения исходных предпосылок, т.е. задача понижения размерности модели.

Выделяют два существенных подхода к решению проблемы сокращения количества исходных переменных:

1.              отсеивание менее существенных факторов в процессе построения регрессионной модели;

2.              замена исходного набора переменных меньшим числом эквивалентных факторов, полученных в результате преобразований исходного набора.


Процедура отсева несущественных факторов в процессе построения регрессионной модели и получила название многошагового регрессионного анализа.

Этот метод основан на вычислении нескольких промежуточных уравнений регрессии, в результате анализа которых получают конечную модель, включающую только факторы, оказывающие статистически существенное влияние на исследуемую зависимую переменную. Различные сочетания одних и тех же факторов оказывают разное влияние на зависимую переменную. Вследствие этого появляется необходимость  выбора наилучшей модели, т.к. перебирать все возможные варианты сочетания факторов и строить множество уравнений регрессии (количество которых может быть очень велико) просто не имеет смысла.

Таким образом методы пошагового регрессионного анализа позволяют избежать столь громоздких расчетов и получить достаточно надежную и полную модель зависимости исследуемого признака от ряда объясняющих переменных.   













Как было сказано выше, основой многошагового регрессионного анализа является построение уравнения регрессии. Рассмотрим более подробно его систему и основные понятия.


Многомерный регрессионный анализ

 

 

В общем виде многомерная линейная регрессионная модель зависимости y от объясняющих переменных , ,…, имеет вид:


.

 

Для оценки неизвестных параметров  взята случайная выборка объема n из (k+1)–мерной случайной  величины (y, ,,…,).

В матричной форме модель имеет вид:


,

где   , ,  ,  ε=        

- вектор-столбец фактических значений зависимой переменной размерности n;

- матрица значений объясняющих переменных размерности n*(k+1);

- вектор-столбец неизвестных параметров, подлежащих оценке, размерности (k+1);

- вектор-столбец случайных ошибок размерности n с математическим ожиданием ME=0  и ковариационной матрицей     соответственно, при этом

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать