│ N │ y │ x1 │ x2 │ x3 │ x4 │ x5 │
├────┼────────┼───────────┼────────┼────────┼────────┼─────────┤
│ 1 │ 63.00 │ 23102.00 │ 60.85 │ 32.70 │ 55.30 │ 87.00 │
│ 2 │ 44.50 │ 9226.00 │ 21.00 │ 12.70 │ 97.00 │ 58.00 │
│ 3 │ 46.00 │ 4304.00 │ 30.80 │ 7.50 │ 75.20 │ 108.00 │
│ 4 │ 56.50 │ 1169.00 │ 29.50 │ 35.80 │ 59.30 │ 71.00 │
│ 5 │ 48.50 │ 5001.00 │ 2.29 │ 3.80 │ 77.40 │ 101.00 │
│ 6 │ 47.20 │ 8305.00 │ 8.48 │ 8.10 │ 91.20 │ 92.00 │
│ 7 │ 51.00 │ 1058.00 │ 35.80 │ 22.30 │ 87.60 │ 98.00 │
│ 8 │ 37.00 │ 670.00 │ 18.50 │ 15.10 │ 85.20 │ 62.00 │
│ 9 │ 54.00 │ 13704.00 │ 35.86 │ 37.60 │ 69.80 │ 73.00 │
│ 10 │ 42.20 │ 6380.00 │ 19.07 │ 4.20 │ 80.00 │ 91.00 │
│ 11 │ 45.00 │ 925.00 │ 23.80 │ 38.60 │ 71.60 │ 83.00 │
│ 12 │ 64.50 │ 372.00 │ 73.95 │ 72.20 │ 80.00 │ 75.00 │
│ 13 │ 60.60 │ 50740.00 │ 45.37 │ 47.90 │ 56.50 │ 89.00 │
│ 14 │ 52.00 │ 32461.00 │ 39.50 │ 12.60 │ 42.10 │ 86.00 │
│ 15 │ 53.30 │ 7563.00 │ 40.40 │ 18.50 │ 56.00 │ 91.00 │
│ 16 │ 57.80 │ 8640.00 │ 19.60 │ 16.60 │ 29.20 │ 94.00 │
│ 17 │ 53.00 │ 10822.00 │ 34.60 │ 14.40 │ 59.50 │ 102.00 │
│ 18 │ 61.50 │ 348.00 │ 5.80 │ 18.80 │ 63.10 │ 83.00 │
│ 19 │ 53.30 │ 22936.00 │ 14.17 │ 11.20 │ 50.40 │ 93.00 │
│ 20 │ 52.00 │ 472.00 │ 11.53 │ 15.30 │ 41.60 │ 91.00 │
│ 21 │ 48.50 │ 1837.00 │ 37.27 │ 31.70 │ 84.40 │ 83.00 │
│ 22 │ 52.30 │ 11142.00 │ 37.62 │ 13.50 │ 58.80 │ 102.00 │
│ 23 │ 50.60 │ 1619.00 │ 4.52 │ 0.50 │ 48.00 │ 78.00 │
│ 24 │ 51.00 │ 2349.00 │ 32.94 │ 11.30 │ 74.60 │ 91.00 │
│ 25 │ 60.80 │ 4083.00 │ 52.40 │ 64.80 │ 49.90 │ 151.00 │
└────┴────────┴───────────┴────────┴────────┴────────┴─────────┘
Реализация алгоритма многомерного регрессионного анализа начинается с расчета важнейших статистических характеристик исходной информации и матрицы выборочных парных коэффициентов корреляции.
Рассмотрим более подробно вариационные характеристики переменной у:
. число наблюдений 25
. среднее значение 52.2440
. верхняя оценка среднего 54.5134
. нижняя оценка среднего 49.9746
. среднеквадратическое отклонение 6.6138
. дисперсия 43.7425
. дисперсия (несмещ. оценка) 45.5651
. среднекв. откл. (несмещ. оценка) 6.7502
. среднее линейное отклонение 5.0938
. моменты начальные
. 2-го поpядка 2773.1780
. 3-го поpядка 1.4943e+05
. 4-го поpядка 8.1668e+06
. моменты центpальные
. 3-го поpядка -2.1613e+01
. 4-го поpядка 5.1166e+03
. коэффициент асимметрии
. значение -0.0747
. несмещенная оценка -0.0796
. среднекв. отклонение 0.4637
. коэффициент эксцесса
. значение -0.0000
. несмещенная оценка 0.2846
. среднекв. отклонение 0.9017
. коэффициенты вариации
. по pазмаху 0.5264
. сpеднему линейному откл. 0.0975
. сpеднеквадp. откл. 0.1266
. медиана 52.0000
. мода 48.5000
. минимальное значение 37.0000
. максимальное значение 64.5000
. размах 27.5000
Проанализируем их.
Средняя продолжительность жизни в странах Африки – 52,244 года. Она вычисляется по формуле средней арифметической невзвешенной:
_
у = Σуi/n
где n – объем исследуемой совокупности.
Дисперсия в нашем случае равна 43,7425. Она представляет собой средний квадрат отклонений индивидуальных значений признака от их средней величины и вычисляется по формуле:
_
σ2 = Σ (у I – у )2 / n
Среднее квадратическое отклонение представляет собой корень второй степени из дисперсии, и в нашем случае σ = 6,6138, то есть значение продолжительности жизни в среднем отклоняется на 6,6138 лет.
А среднее линейное отклонение вычисляется по формуле:
_ _
d = Σ |уi -y| / n,
которое в нашем случае равно 5,0938 и представляет собой среднюю величину из отклонений вариантов признака от их средней.
Коэффициент вариации среднеквадратического отклонения в исследуемой нами совокупности равен Vσ = 0,1266 или 12,66%, который вычисляется по формуле:
_
Vσ = σ / у * 100%.
Коэффициент вариации характеризует не только сравнительную оценку вариации, но и дает характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%, то есть наша совокупность является однородной.
Мода – значение признака, наиболее часто встречающегося в совокупности. Она рассчитывается по формуле:
Мо = уМо + iМо * (fМо – fМо-1)/(fМо – fМо-1)*(fМо – fМо+1)
То есть по Африке наиболее часто встречающееся значение продолжительности жизни равно 48,5 лет.
Медиана – значение признака, приходящегося на середину ранжированной (упорядоченной) совокупности.
Ме = уМе + iМе * (0,5 Σf – SМе-1)/fМе.
Таким образом, в нашем случае в половине стран Африки население имеет среднюю продолжительность жизни менее 52 лет, а в другой половине – более 52 лет.
Начальным моментом порядка k случайной величины х называют математическое ожидание величины хк:
νк = М (хк),
в частности ν1 = М (х), ν2 = М (х2).
В нашем случае
начальные моменты равны:
. 2-го поpядка 2773.1780
. 3-го поpядка 1.4943e+05
. 4-го поpядка 8.1668e+06
Центральным моментом порядка k случайной величины х называют математическое ожидание величины (х – (М (х))к, в частности
μ1 = М[х – М (х)] = 0; μ2 = М[ ( х – М (х))2] = D (х).
В нашем случае центральные моменты равны:
. 3-го поpядка -2.1613e+01
. 4-го поpядка 5.1166e+03
Теперь рассмотрим нашу совокупность на предмет симметрии.
Симметричным называется распределение, в котором частоты любых двух вариантов, равностоящих в обе стороны от центра распределения, равны между собой. В статистике для характеристики асимметрии используют показатели асимметрии и эксцесса.
Так как видно, что наша совокупность асимметричная, найдем степень асимметрии. Сперва используем коэффициент асимметрии:
_
Аs = (у – Мо)/ σ = 0,4637,
что свидетельствует о наличии незначительной правосторонней асимметрии (Аs>0).
Теперь рассчитаем показатель эксцесса:
ЕК = μ4/ σ4 – 3, где μ4 – центральный момент четвертого порядка.
ЕК = 0,9017, следовательно, распределение стран Африки по продолжительности жизни является островершинным (ЕК>0).
Кроме того, взглянув на нашу совокупность, можно увидеть, что максимальная продолжительность жизни жителей стран Африки равна уmax=64,5 лет, а минимальная у min=37 лет.
Размах данной совокупности равен уmax - у min = 27,5 лет.
Многошаговый регрессионный анализ.
Построим корреляционную модель из исследуемых шести переменных:y,, ,,,.
Присвоим для облегчения обозначений всем переменным порядковые номера: у-1, х1-2, х2-3, x3-4,x4-5,x5-6.
Предварительно, с целью анализа взаимосвязи показателей построена таблица парных коэффициентов корреляции R.
┌─────┬───────┬───────┬───────┬───────┬───────┬───────┐
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9