Электронные цепи и приборы (шпаргалка)

Электронные цепи и приборы (шпаргалка)

1. Зонная модель полупроводника.

К полупроводникам (ПП) относятся вещества, занимающие по величине удельной электрической проводимости промежуточное положение между металлами и диэлектриками. Их удельная электрич. проводимость лежит в пределах от 10-8 до 105 см/м и в отличие от металлов она возрастает с ростом темпер-ры.

ПП представляют собой достаточно многочисленную группу веществ. К ним относятся химич. элементы: германий (Ge), кремний (Si), бор, углерод, фосфор, сера, мышьяк, селен, серое олово, теллур, йод, некоторые химич. соед-ния и многие органич. вещества.

В электронике находят применение ограниченное кол-во полупроводниковых материалов. Это, прежде всего Si, Ge, и арсенид галлия.

Применяемые в электронике ПП имеют весьма совершенную кристаллическую структуру. Их атомы размещены в пространстве в строго периодической последовательности на постоянных расстояниях друг от друга, образуя кристалл-ую решетку. Решетка наиболее распространенных в электронике полупроводников – Ge и Si – имеет структуру алмазного типа. В такой реш. каждый атом вещества окружен четырьмя такими же атомами, находящимися в вершинах правильного тетраэдра.

Каждый атом, находящийся в кристаллической решетке, электрически нейтрален. Силы, удерживающие атомы в узлах решетки, имеют квантово-механический характер; они возникают за счет обмена взаимодействующих атомов валентными электронами. Подобная связь атомов носит название ковалентной связи, для ее создания необходима пара электронов.

В Ge и Si, являющихся 4х-валентными элементами, на наружной оболочке имеется по четыре ковалентные связи с четырьмя ближайшими, окружающими его атомами.

    

                      рис. 1.                рис. 2.

На рис. 1 показ. условн. изображ. кристалич. решетки Si на плоскости:

1 – атом кремния, 2 – ковалентная связь, образованная одним электроном.

На рис. 2 показ. образование свободного электрона под действием тепловой энергии:

1 – нарушенная ковалентн. связь, 2 – свободный электрон, 3 – незаполненная связь (дырка).

           рис. 3.

EV – энергетич. уровень (max энергия связанного электрона), Ed – энергия донора, Ec – зона проводимости (min энергия свободного электрона), Eg – ширина запрещенной зоны.

EF – уровень Ферми, вероятность заполнения кот. равна ½.

2. Электропроводность полупроводников.

К полупроводникам (ПП) относятся вещества, занимающие по величие удельной электрической проводимости (ЭП) промежуточное положение между проводниками (металлы) и диэлектриками. Значения удельной ЭП этих трех классов веществ приведены в табл.

Основным признаком, выделяющим ПП как особый класс веществ, явл. сильное влияние температуры и концентрации примесей на их ЭП. Так, например, даже при сравнительно небольш. повыш. темп-ры проводимость ПП резко возрастает (до 5 – 6% на 1ºС).

У большинства ПП сильное изменение ЭП возникает под действием света, ионизирующих излучений и др. энергетич. воздействий. Т.о ПП – это вещество, удельная проводимость кот. существенно зависит от внешн. факторов.

Электропроводность ПП определяется направленным движением электронов под действием внешнего электрического поля.

В ПП валентная зона и зона проводимости разделены не широкой запрещенной зоной. Под действием внешнего эл. поля возможен переход электронов из валентной зоны в зону проводимости. При этом в валентной зоне возникают свободные энергетические уровни, а в зоне проводимости появляются свободные электроны, называемые электронами проводимости. Этот процесс наз. генерацией пар носителей, а не занятое электроном энергетич. состояние в валентной зоне – дырка.

Электропроводность, обусловленную генерацией пар носителей заряда электрон-дырка, называют собственной электропроводностью. Возвращение возбужденных электронов из зоны проводимости в валентную зону, в рез. которого пара носителей заряда электрон-дырка исчезает, называют рекомбинацией.

Дрейфовый ток. Электроны и дырки в кристалле нах-ся в сост. хаотического теплового движ-ия. При возникновении эл. поля на хаотич. движение накладывается компонента направленного движ., обусловленного действием этого поля. В рез. электроны и дырки начин. перемещ-ся вдоль кристалла – возникает эл. ток, кот. называется дрейфовым током.

Диффузионный ток обусловлен перемещением носителей заряда из области высокой концентрации в область более низкой концентр.

Одним из главных принципов, лежащих в основе многих физических процессов, явл. принцип электрической нейтральности полупроводника, заключающийся в том, что в сост. равновесия суммарный заряд в ПП равен нулю. Он выражается уравнением электронейтральности:

  .

3. p-n переход в условиях термодинамического равновесия.

Основная часть полупроводниковых приборов – это p-n переход. p-n переход – это граница раздела между двумя ПП с разным типом электропроводности – p и n.

Мы знаем, в р-области дырок много, а в п-области их мало, и соответственно в п-области электронов много, а в р-области их мало. В результате такой разности концентрации возникает процесс диффузии. В результате чего возникают диффузионные токи дырок и электронов. Эти токи явл. токами основных носителей зарядов. Дырки из р-области переходят в п-область и рекомбинируют с электронами. Также электроны переходят из п-области в р-область и рекомбинируют с дырками. В рез. в р-п переходе образуется слой без подвижных носителей заряда, имеющий большое R, и кот. называется запирающим слоем. В этом слое имеются только отриц. заряды ионов, кот. создают отрицательный заряд –q, и положительный заряд ионов +q. Эти заряды создают эл. поле Eвн, направленное от + к – с отриц. потенциалом в р-области и положит. потенциалом в п-области. Эта разность потенциалов наз. контактной разностью потенциалов.

Эти заряды +q и –q препятствуют дальнейшему прохождению основных носителей ч/з р-п переход. Дырки отталкиваются от +q, а электроны отталкиваются от –q. Т.е. процесс диффузии приостанавливается и Iдиф дальше не растет. Поэтому мы говорим, что в р-п переходе возникает потенциальный барьер для основных носителей. В то же время эти объемные заряды +q и –q своим эл. полем Е действуют ускоряюще на неосновные носители зарядов (электроны из р-области притягиваются к +q, а дырки из п-области к –q). В результате неосновные носители под действием эл. поля Е легко перейдут ч/з р-п переход и создадут дрейфовые токи. Дрейфовые токи – это токи неосновных носителей. В какой-то момент времени дрейфовый и дифф. ток ч/з р-п переход становятся равными и противоположными, тогда Iобщ=Iдр+Iдиф=0.

Энергетическая диаграмма р-п перехода в состоянии термодинамического равновесия.

4. Переход металл-полупроводник.

Уровни энергии валентных электронов образуют валентную зону (ВЗ), а следующий уровень энергии, находящийся выше ВЗ образ. зону проводимости (ЗП). ЗП и ВЗ разделены запрещенной зоной (ЗЗ), ширина кот. различна у разных  материалов.

У проводников-металлов – ВЗ заполнена частично, электроны занимают нижнюю часть зоны, а верхние уровни ВЗ не заполнены. Под действием слабого внешн. электр. поля валентные электроны приобрет. доп. энергию – кинетическую, заполняя в ВЗ занятые более высокие уровни энергии. Это означает, что электроны под действ. электр. поля приобрет. скорость и участвуют в перенесении электр. заряда, т.е. протекает электрический ток. Возможна и другая зонная структура проводника, при кот. ВЗ целиком заполнена валентными электронами, но ВЗ и ЗП перекрываются, т.е. ЗЗ отсутствует. В этом случае электроны под действием электр. поля могут приобретать дополнительную кинетич. энергию, занимая свободные уровни энергии в ЗП. Валентные электроны в металле принадлежат одновременно всем атомам кристалла и явл. свободными носителями заряда.

Если ВЗ заполнена целиком и ширина ЗЗ не равна 0, то валент. электроны не могут приобретать дополнит. кинетич. энергию и не явл. свободными. Если же вал. электрону собщить энергию, способную преодолеть ЗЗ, то он переходит из ВЗ на один из незанятых уровней ЗП и станов. свобод. носителем заряда. Одновременно в ВЗ появляется один свобод. уровень, соответствующий дырке, что позволяет электронам ВЗ перемещаться. Переход электрона из ВЗ в ЗП может произойти под действием тепловой энергии или какого либо другого источника энергии.

Если ширина ЗЗ относительно велика то тепловой энергии электронов недостаточно, чтобы перейти им из ВЗ в ЗП. Свободных носителей заряда в таких материалах нет и их относят к диэлектрикам.

5. p-n переход при прямом смещении.

Электронно-дырочным p-n наз. такой переход, кот. образован двумя областями ПП с разными типами проводимости: электронный и дырочный. Включение при кот. к p-n переходу прикладывается внешн. напряж. Uпр в противофазе с контактной разностью потенц. наз. прямым (см. рис. 1.). Как видно из потенциальной диаграммы (рис. 2) высота потенциального барьера уменьшается:

                               Uб=Uк-Uпр

Ширина p-n перехода также уменьшается h’<h. Дрейфовый ток уменьшается, диффузионный ток резко возрастает. Динамическое равновесие нарушается и ч/з p-n переход протекает прямой ток:

      Iпр=Iдиф - Iдр ≈ Iдиф=Iобр ехр·(qeUпр / кТ).

Из формулы видно, при увелич. Uпр ток может возрасти до больших значений, т.к. он обусловлен движением основных носителей, концентрация которых в обеих областях ПП велика.

рис. 1.

ВАХ p-n перехода наз. зависимость тока, протекающего ч/з p-n переход, от величины и полярности приложенного U. Аналитич. выраж. ВАХ p-n перехода имеет вид:

I=Iобр [ехр·(qeU / кТ)-1], где Iобр – обратный ток насыщения p-n перехода, U – напряж., приложенное к p-n переходу

Хар-ка, построенная с использованием этого выражения, имеет 2 характерных участка (рис. 2).

рис. 2.

1. участок соответствующий прямому управляющему напряжению; 2. участок соответствующий Uобр.

При больших Uобр наблюдается пробой p-n перехода, при кот. Iобр резко увеличивается. Различают два вида пробоя: электрический и тепловой.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать