Электронные цепи и приборы (шпаргалка)

Эта зависимость изображена на рис. 1, где сплошной линией показана характеристика плавного перехода, а пунктирной – резкого перехода.

(В) могут быть использованы для различных целей как конденсаторы с переменной емкостью. Иногда их используют в параметрических усилителях. В принципе работы параметрического усилителя лежит частичная компенсация потерь в колебательном контуре, состоящем из катушки индуктивности L и конденсатора C, при периодическом изменении емкости конденсатора или индуктивности катушки (при условии, что изменение будет происходить в определенных количественных и фазовых соотношениях с частотой колебаний контура). В этом случае увеличение мощности электрических колебаний (сигнала) происходит за счет энергии того источника, который будет периодически изменять величину реактивного параметра. В качестве такого переменного реактивного параметра и используется В, емкость которого меняется в результате воздействия гармонического U подаваемого от специального генератора накачки. Если с помощью U и генератора накачки полностью скомпенсировать все потери контура, т.е. довести его до состояния самовозбуждения, то такая система носит название параметрического генератора.

Очевидно, что в качестве управляемой емкости может работать любой полупроводниковый диод, при условии, что величина его зарядной емкости достаточно велика. К специальным параметрическим диодам, работающим в параметрических усилителях на высоких и сверхвысоких частотах, предъявляются повышенные требования: они должны обладать сильной зависимостью емкости от U и малым значением сопротивлением базы для повышения максимальной рабочей частоты.

11. Высокочастотные диоды.

В высокочастотных полупроводниковых диодах так же, как и в выпрямительных диодах, используется несимметричная проводимость p-n перехода.

Они работают на более высоких частотах, чем выпрямительные диоды (до сотен МГц), и подразделяются на универсальные и импульсные. Универсальные ВЧ диоды применяются для получения высокочастотных колебаний тока одного направления, для получения из модулированных по амплитуде высокочастотных колебаний – колебаний с частотой модуляции (детектирование), для преобразования частоты. Импульсные диоды применяются как переключающий элемент в импульсных схемах.

При работе полупроводникового диода на высокой частоте большую роль играет емкость перехода, обусловливающая инерционность диода. Если диод включен в выпрямительную схему, то влияние емкости приводит к ухудшению процесса выпрямления

Кроме того, эффективность выпрямления снижается за счет того, что часть подведенного к p-n переходу внешнего напряжения падает на сопротивлении базы диода. Отсюда следует, что p-n переходы полупроводниковых диодов, работающих на высокой частоте должны обладать малой емкостью и малым сопротивлением базы.

Для уменьшения емкости уменьшают площадь перехода, а для уменьшения сопротивления базы уменьшают толщину базы.

Требования уменьшения инерционных свойств в.ч. диода и, в связи с этим уменьшения площади перехода, времени жизни неравновесных неосновных носителей заряда и толщины базы становится особенно важным в том случае, если диод работает в импульсной схеме в качестве переключателя. Переключатель имеет два состояния: открытое и закрытое. В идеальном случае переключатель должен иметь нулевое сопротивление в открытом состоянии, бесконечно большое – в закрытом, и мгновенно переходить из одного состояния в другое. В реальном случае при переключении ВЧ диода из закрытого состояния в открытое и обратно стационарное состояние устанавливается в течение некоторого времени, которое называется временем переключения и характеризует инерционные свойства диода. Наличие инерционных свойств при быстром переключении приводит к искажению формы переключаемых импульсов.

При изготовлении импульсных диодов в исходный полупроводник вводятся элементы, являющиеся эффективными центрами рекомбинации (Au, Cu, Ni), что снижает время жизни неравновесных носителей заряда. Толщина n-области (базы) уменьшается до значений меньших, чем значение диффузионной длины пробега дырок . Это одновременно уменьшает и время жизни неравновесных носителей, и сопротивление базы. Конструктивно в.ч. диоды выполняются в виде точечной конструкции или плоскостной с очень малой площадью перехода.

12. Биполярный транзистор.

Бип. тр-ром (БТ) наз-ся электропреобразовательный полупроводниковый (ПП) прибор, имеющий два взаимодействующих перехода. Тр-р представляет собой кристалл ПП, содержащий 3 области с поочередно меняющимися типами проводимости. В зависимости от порядка чередования областей различ. БТ типов p-n-p и n-p-n. Принцип действия БТ различных тип. одинаков. Тр-ры получили назв. бипол., т.к. их работа обеспеч-ся носителями зарядов двух типов основными и неосновн.

Схематическое устр-во и условн. графич. обознач. p-n-p и n-p-n тр-ров показ. на рис. 1.

рис. 1.

Одну из крайних областей тр-ной структуры создают с повыш. концентрацией примесей, используют в режиме инжекции и наз. эмиттером. Среднюю область наз. базой, а крайнюю обл. – коллектором. Два перехода БТ наз. эмиттерным и коллекторным.

В завис. от того, какой электрод имеет общую точку соедин-я со вх. и вых. цепями, различ. 3 способа включ. тр-ра: с ОБ, ОЭ и ОК. Электрич. парам-ры и хар-ки БТ существенно различ-ся при разных схемах вкл.

По режимам работы p-n перехода различают 4 режима работы тр-ра:

1. Активный режим – эмиттерный переход открыт, коллекторный закрыт. Этот режим работы явл. обычным усилительным, при котором искажения сигнала min.

2. Режим насыщения – оба перехода откр. Падение U на откр. эмит. и колл. переходах напр. встречно, однако I в цепи Э-К проходит в одном напр., напр. от К к Э в тр-ре n-p-n типа (рис. 2.а). Тр-р работает в реж. насыщ. при относит. больших токах базы. Инжекции электронов в Б при этом становится столь сильной, что цепь К становится неспособной извлекать избыточные электроны из Б также эффективно, как в активном режиме. Концентрация электронов в Б у колл. перехода становится сравнимой с концентр. их у эмитт. перехода (рис. 2.b), что соотв-ет прямой полярности U на колл. переходе.


рис. 2.

3. Режим отсечки оба перехода закрыты. Он характ-ся очень малыми I ч/з запертые переходы тр-ра.

4. В инверсном реж. эмитт. переход закр., а колл. откр., т.е. Т вкл. «наоборот»: К работает в качестве Э, Э в качестве К.

Параметры БТ.

В справочниках приводятся основные и предельные параметры тр-ра.

К основным пар. относятся:

1. Емкость колл. перехода Ск;

2. Коэфф. усиления (передачи) по току h21Э;

3. Обратный I колл. перехода при включенном эмитт. Iкб0;

4. Предельная частота fa;

5. Сопротивление базы .

13. Статические ВАХ биполярного тр-ра включенного по схеме с ОБ.

Статические хар-ки представляют собой графики экспериментально полученных зависимостей между I, протекающими в транзисторе, и U на его p-n-переходе при Rн = 0.

Вх. и вых. I и U различны для различных схем включения транзистора. Каждая из схем включения может быть охарактеризована четырьмя семействами статич. хар-тик. Практически обычно пользуются вх. и вых. характеристиками для схем с ОБ и ОЭ.

Рассм. ход статических выходных характеристик транзистора, включенного по схеме с ОБ, ход которых показан на рис. 1

                    

рис. 1.

Вид хар-ки, снятой при Iэ=0, соответствует обратной ветви ВАХ одиночного p-n-перехода. В этом случае Iк=Iк0, где 0 – нулевой коллекторный ток.

Если Iэ > 0, то значения I коллектора увеличиваются за счет носителей заряда, инжектированных из эмиттера в базу. В этом случае коллекторный I протекает и при Uкб = 0. Для того, чтобы уменьшить значение колл-го I до 0, необходимо подать на колл-ный переход прямое U, при этом потенциальный барьер перехода снизится, и навстречу потоку неосновных носителей заряда потечет поток основных носителей заряда; при равенстве этих потоков колл-ный ток равен нулю.

При увеличении обратного U на коллекторе снятые хар-ки, имеют небольшой подъем, т.е. , возрастает при увеличении U на коллекторе. Это объясняется тем, что с увеличением обратного коллекторного U растет ширина коллекторного перехода (в основном в сторону базы), уменьшается рекомбинация неосновных носителей в толще базы, уменьшается рекомбинационная составляющая I базы, и I коллектора Iк=Iэ - Iб при Iэ=const несколько растет. Хар-ки, снятые ч/з равные интервалы изменения I эмиттера, располагаются неравномерно: чем больше значения I эмиттерного перехода, тем ближе друг к другу располагаются хар-ки. Это объясняется тем, что возрастание эмиттерного I приводит к увеличению рекомбинации, а значит к уменьшению .

При больших значениях коллекторное напряжение возрастает за счет лавинного умножения носителей заряда в коллекторном переходе.

Большую роль в работе транзистора играет обратный неуправляемый I коллекторного перехода 0, кот. явл. частью при любом значении . Т.к. 0 представляет собой ток неосновных носителей заряда, число которых непосредственно зависит от температуры, то его существование предопределяет температурную нестабильность работы транзистора.

14. Статические ВАХ бип. тр-ра вкл. по схеме с ОБ.

Рассм. ход статических вх. хар-ик транзистора, вкл. по схеме с ОЭ Iб=F(Uбэ)|Uкэ=const.

В этом случае они имеют вид, показанный на рис. 1.

     рис. 1

Рассм. ход хар-ки, снятой при Uкэ=0. Если на коллекторную p-область подан нулевой, а на базовую n-область – отрицательный потенциал (т.е. |Uкэ| < |Uбэ|), то коллекторный переход находится под прямым U, и через него протекает диффузионная составляющая I (ток основных носителей заряда), которая замыкается через базу.

Через эмиттерный переход, на кот. от батареи подается прямое U, также протекает диффузионная составляющая I, причем, т.к. подача Uкэ=0 для схемы с ОЭ означает короткое замыкание между колл. и эмитт., I эмиттера тоже замыкается через базу. При изменении Uбэ каждый из этих токов изменяется в соответствии с ходом прямой ветви ВАХ p-n-перехода. В базовом выводе эмиттерный и коллекторные токи протекают в одном направлении, т.е. Iб = Iэ + Iк и вх. хар-ка, снятая при Uкэ = 0, представляет собой прямую ветвь ВАХ двух параллельно включенных p-n-переходов.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать