Получение тонкопленочных электретов на основе фторопласта - 4 и изготовление приборов на их основе

Неблагоприятные микроклиматические условия: повышенная или пониженная температура и влажность, подвижность воздуха в рвбочей зоне – все это оказывает отрицательное влияние на организм человека.  При выполнении работы обмен веществ в организме усиливается , увеличивается и его теплопродукция , следовательно , требуется более интенсивная отдача теплоты в окружающую среду , иначе может наступить накопление теплоты ,повышение температуры тела , которое ведёт к ухудшению самочувствия человека и к заболеваниям . Поэтому на рабочих местах необходимо поддерживать оптимальный уровень микроклимата : нормальную для человека температуру воздуха , влажность , обеспечивать вентиляцию помещений , соответствующую подвижность воздуха . Нормальная температура воздуха в тёплый период года 23 - 25 0С , а в холодный - 22. .24 0С..  Система кондиционирования должна обеспечивать влажность в пределах  40-80 процентов , оптимальный показатель влажности согласно ГОСТ 12. 1.005-88 , лежит в приделах 40-60 процентов.  Повышенная подвижность воздуха в сочетании с пониженной температурой может вызвать различные заболевания . Пониженная подвижность затрудняет теплообмен организма с окружающей средой . Норма скорости движения воздуха составляет 0,1..0,2 м/с .

Повышеный уровень шума на рабочем месте влияет на работоспособность , вызывая усталость. Источником шума в лаборатории могут быть несколько типов измерительных приборов в общей системе измерений. Шум представляет собой беспорядочное сочетание звуков разной интенсивности и частоты . Шум оказывает вредное влияние на весь организм и в первую очередь на нервную и сердечно-сосудистою системы. Шум неблагоприятно воздействует на человека : ослабляет внимание , увеличивает расход энергии при одинаковой физической нагрузке , замедляет скорость психических реакций , что может привести к несчастному случаю. Нормативные параметры шума на рабочих местах являются обязательными для всех организаций и предприятий . Нормы допустимого шума на рабочих местах являются обязательными и регламентируются требованиями ГОСТ 12.1.003-83. ССБТ , а для лабораторий предельно допустимый уровень шума составляет не более 50 дБ, по шкале А. Снизить уровень шума можно путем обивки стен лаборатории шумопоглощающими материалами.


5.3.Расчёт зануления .

  

Одним из самых опасных факторов на производстве является электрический ток . Основной целью расчета является определение условий ее надежного функционирования, то есть быстрого отключения поврежденой электроустановки от сети при одновременном обеспечении безопасного напряжения на ее корпусе в течение времени от возникновения аварийной ситуации до момента отключения. Рассчитаем зануление на отключающую способность. Эквивалентная  схема для расчета представлена на рис. 5.1.

   Рассчитаем зануление в лаборатории МЭЛ . В качестве защитного проводника используется нулевой рабочий проводник, так как все провода из алюминия, то реактивной составляющей можно принебречь [21], а следовательно все сопротивления считать активными.

Zфс=Rфс, Zфр=Rфр, Zнc=Rнс, Zнр=Rнр                  (4.1)

Величины сопротвления расчитываются по формуле:

R=r*(l/s)                                                      (4.2)

Где l – длинна кабеля на соответствующем участке, S – площадь его сечения . а r для алюминия равно 0,028 Ом*мм2/м [20].

Возьмем длину силового кабеля от подстанции 100 метров, длину кабеля этажной раазводки30 метров. Согласно ПУЭ, сечение жил кабелей соответственно 25 мм и 4 мм.

Сопротивление фазного провода равно:

Rф=Rфс+Rфр=0,028*(100/25+30/4)=0,322  (Ом)

Rф=Rн=0,322  (Ом)

Сопротивление петли фаза – нуль Rфн равно:

Rфн=Rф+Rн+Rдоп=0,644+Rдоп                           (4.3)

Исходя из токопотребления лабораторных установок, выбираем предохранитель с номинальным током 1 (А). Следовательно:

Rдоп=0,3 Ом    Rфн=0,944 Ом

Определим величину тока короткого замыкания Iкз по формуле:

Iкз=Uф/(Zт/3+Rфн)-1=220/(0,906+0,944)=177 (А)

Zт=0,906 – сопротивление обмоток трехфазного трансформатора – взятого из таблицы [20].

При замыкании фазы на корпус электроустановка автоматически отключается, если значение тока удовлетворяет условию:

Iкз>=Iном*К                                                  (4.4)

Где К коэффициент кратности номинального тока плавкой вставки предохранителя. В данном случае К>3, поэтому наименьшим допустимым током Iкз должен быть Iкз min=3 А. Расчитанное значение Iкз=177 А, а следовательно, отключающая способность системы обеспечена  Время выгорания предохранителя менее 0,01 с.

Оценим напряжение прикосновения , возникающее при замыкании фазы на корпус:

Uпр max=Uф*(Rп/(Rо+Rп)*Rнс+Rнр)/R                        (4.5)

Где  R=Rф+Rн+Zт/3+Rдоп                                 (4.6)

  Rо= 4 Ом; Rп=10 Ом

R=0,322+0,322+0,906/3+0,3=1,246 Ом

Uпр max=9220*(10/(4+10)*0,,112+0,21))/1,246=51,2 В

При данных значениях напряжения прикосновения и времени выгорания предохранителя обеспечивается защита от поражения током.                                    .
















Расчетная схема электрической сети для случая замыкания одной из фаз на корпус прибора.






Рисунок 5.1.


Zфс, Zфр - комплекс сопротивлений фазного провода силового кабеля и кабеля разводки внутри здания.

Zнс, Zнр - комплекс сопротивлений нулевого провода силового кабеля и кабеля внутренней разводки.

Ro,Rп - сопротивление заземления нейтрали и повторного заземления.

Rдоп - дополнительное сопротивление.

Uф - фазное напряжение.


6.Заключение.


В обзоре литературы были рассмотрены различные методы получения электретов в плазме газового разряда, модели и влияние внешних факторов на характер заряда электрета.

Было приведено технико-экономическое обоснование данного дипломного проекта.

В экспериментальной части были показаны: методика получения электретов в плазме газового разряда; сконструирована ячейка для электретирования мембран диаметром 10 мм.; оптические исследования электретированных пленок фторопласта - 4; сконструирован электретный микрофон для мембран данного диаметра. Исследовалось влияние режимов электретирования на характеристики электретов.  Были приведены выводы и рекомендации по экспериментальной части.

В экономической части: был построен ленточный график; составлены сметы затрат на разработку; расчет цены для НИР; выводы по эффективности предложений.

По безопасности и экологичности проекта были рассмотрены опасные и вредны факторы влияющие на инженера - исследователя, и приведен расчет зануления.










7.Библиографический список.


1.     Губкин А.Н. Электреты. М.: наука. 1984. 192 с.

2.      Губкин А. Н. Электреты: электретный эффект в твердых диэлектриках. — М.: “Наука”, 1978. — 192с.

3.     Лущейник Г.А. Полимерные электреты. М.: Химия,1984, 257 с.

4.     Мяздриков О.А., Манойлов В.Е. Электреты. М.-Л.: Высшая школа. 1964. 112 с.

5.     Фридкин В.М. физические основы электрографического процесса. М.: Энегрия. 1966. 80 с.

6.     Электреты: пер. с анг. / Под ред.  Г.Сеслера. М.: Мир.486 с.

7.     Аброян А.И. Физические основы электронной и ионной технологии. М.: Знание. 1984. 328 с.

8.     Фелдман Л., Майер Д. Основы анализа поверхности и тонких пленок: Пер. с анг. М.: Мир.1989. 344 с.

9.     Тимофеев В.Н., Шемонаев Н.В. Электретный эффект и его применение. Учебное пособие. Рязань 1996 40 с.

10.    Тимофеев В.Н., Шемонаев Н.В. Физическая модель неполярного электрета // Физика полупроводников и микроэлектроника: межвуз. сб. Рязань : РГРТА. 1997. С. 80-85.

11.    Электропроводящие и электретные полимерные материалы. Сб.  Полимеры. Изд. МГУ 1965. 387 с.

12.    Тимофеев В.Н. Исследование электретного эффекта в полимерных пленках при поляризации в плазме газового разряда: Дис. кан. техн. наук. Рязань: РРТИ. 1974. 192 с.

13.    Перелыгина Т.К. Исследование электретного эффекта в пленках политетрафторэтилена и разработка приборов на их основе: Дис. кан. т ех. Наук: Рязань: РРТИ.1975. 193 с.

14.    Шемонаев Н.В. Релаксационные процессы  в электретных пленках политетрафторэтилена и стабилизация параметров приборов на их основе. Дис. кан. тех. Наук Рязань.: РГРТА. 1997. 147 с.

15.    ГОСТ12.0.003. -  74 опасные и вредные производственные факторы.

16.    ГОСТ12.1.038. – 82 ССБТ. Электробезопасность. Предельные уровни напряжения прикосновения и токов.

17.    ГОСТ12.1.019 – 79  Электробезопасность. Общие требования.

18.    ГОСТ12.1.005 – 88  Воздух рабочей зоны. Общие санитарногигеенические требования.

19.    ГОСТ12.1.033 – 83 ССБТ. Шум. Общие требования безопасности.

20.    ГОСТ12.1.004 – 91 Пожарная безопасность. Общие требования.

21.    Сибаров Ю.Г. Охрана труда. М.: Машиностроение. 1985. 175 с.

22.    Долин П.А. Основы техники безопасности в электроустановках.. М.: Энергоатомиздат. 1984. 448 с.

23.    Кулаков Ю.В., Тагильцев А.А., Коренбаум В.И., Кириченко С.А. Прибор для исследования состояния бронхиальной проходимости акустическим методом.// Медицинская техника. — 1995. № 5.  20—23 с.

24.    Иванов А. А., Семякин Ф. В. Исследование работы емкостных микрофонов. //Техника средств связи. Сер. “Техника проводной связи”. 1984. № 3.  35—43 с.





P.S. студенты и кто еще это прочитал никогда так больше не делайте!

 



Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать