Контактный метод имеет ряд существенных недостатков и главный из них низкая точность измерения поверхностной плотности заряда (из-за
Схема измерения заряда пронвеновек
еншлнг
енглкнгнг
Еклшенглкналкна
воздушных промежутков между металлическими электродами и электретом, в индуцируемый заряд всегда меньше, чем настоящий поверхностный заряд, и в это же время происходит частичный разряд электрета, что вносит произвольную ошибку в процесс измерения). Исходя из этих соображений в измерениях используется бесконтактный метод с вибрирующим электродом.
Этот метод получил особое развитие в последние годы в связи с тем , что он очень прост, не разрушает электрета и дает достоверные результаты, совпадающие с результатами других измерений. Кроме того этот метод удобен
еще тем, что позволяет измерить непосредственно на электретных мембранах, что и определило его использование в данной дипломной работе.
На рисунке 6 представлена функциональная схема для измерения заряда электрета данным методом. Схема состоит из измерительного прибора, звукового генератора Г3-34, источника постоянного напряжения УИП-2 и осциллографа С1-65. Компенсирующее напряжение измеряется цифровым электронным вольтметром В7-21 А. Верхний, вибрирующий (с частотой 70 Гц) электрод (1) жестко соединен с диффузором динамического громкоговорителя 1ГД-40 и находится на расстоянии 1,0-1,5 мм. От поверхности мембраны (2).
Для создания необходимых колебаний на звуковую катушку громкоговорителя подается переменное напряжение 0,5 В от генератора Г3-34.
Нижний подвижный электрод (3) служит предметным столиком для закрепления образца. Вибрирующий во внешнем поле электрета электрод согласно закона электростатической индукции генерирует переменное синусоидальное напряжение, которое отмечается на экране осциллографа С1-65 А рис. 7.
U=A*R*dI*s*w*соs w*t (2.2)
, где А=(e*S/L)*1/(e*I0/L+1) (2.3)
Синусоида
аповеншлвео
впрьлванг
певьрнлв
впоьвпненве
коэффициент зависящий только от диэлектрической проницаемости электрета, его размеров (L,S) и зазора I0; - круговая частота колебаний электрода; dI- амплитуда колебаний верхнего электрода относительно среднего положения; R- сопротивление цепи.
Компенсирующее напряжение внешнему полю электрета, подается от внешнего источника УИП-2. В момент компенсации напряжения на экране осциллографа наблюдаются линии развертки рисунок 6. Зная величину компенсирующего напряжения Uк, можно рассчитать поверхностную плотность заряда пленочного электрета, по формуле:
s=e*e0*U/L (2.4)
Знак электрета определяется по полярности компенсирующего напряжения.
Высокая точность измерения зарядов с помощью приведенной установки достигается использованием в качестве чувствительного нуль индикатора – осциллографа С1-65 А и для отсчета компенсирующего напряжения цифрового электронного вольтметра В7-21 А.
3.6.Исследование влияния режимов электретирования на характеристики электретов.
При получении электретов из пленок фторопласта – 4, как показали измерения, возникает гомозаряд, отрицательный по своему знаку на измеряемой стороне. При зажигании заряда в рабочем объеме электроны более подвижны, чем отрицательные ионы , осаждаются на поверхности получаемого образца. При подаче на электрод положительного импульса в диэлектрической пленке создается сильное диэлектрическое поле, под действием которого электроны инжектируются в тонкий приповерхностный слой и закрепляются на ловушках. В течении отрицательного полу периода адсорбированные на поверхности и слабо закрепленные носители выбрасываются обратно в плазму. Таким образом создаются условия для дальнейшего захвата зарядов глубокими ловушками и формирования стабильного гомозаряда. Следовательно, величина начальной и установившейся плотности поверхностных зарядов пленочных электретов определяется параметрами режима электретирования.
Основными параметрами являются:
Р – рабочее давление;
Iр – разрядный ток;
Ер - напряжение электрического поля в образце;
tэ – время электретирования.
В разработаной конструкции ячейки для электретирования в плазме разрядник служит для создания высокоионизированной газовой среды, используемой в качестве инжектирующего электрода. Равномерное распределение плазмы над пленочным образцом достигается при разряжении в рабочем объеме 10-1 – 10-2 мм рт. ст. Увеличение давления приводит к контрагированию разряда и, следовательно, к неравномерному распределению гомозаряда по поверхности образца.
Уменьшение давления ниже 10-2 мм рт.ст. сопровождается резким возрастанием напряжения горения разряда и уменьшением концентрации зарядов в плазме, так же возможна деструкция поверхности диэлектрической пленки. Поэтому в целях создания технологически выгодных режимов и предотвращения пробоя образцов выбрана величина разряжения в рабочей камере, получаемая обычными форвакуумными установками, то есть 10-1 – 10-2 мм рт.ст. При таких условиях исследовалось влияние параметров процесса электретирования в плазме на заряд полимерных пленок. Зависимость плотности заряда от давления показана на рисунке 9.
По каждому режиму было получено три партии по 5 образцов электретных мембран, таким образом приведенные ниже кривые представляют собой усредненные характеристики.
3.6.1.Влияние разрядного тока на плотность заряда электрета.
Расчеты показывают, что для обеспечения процесса электретирования достаточно создавать в разрядном промежутке разрядные токи Ip порядка десятков микроампер. В предложенной трехэлектродной системе нижним пределом, обеспечивающим стабильное горение разряда, является Ip=100 мкА. При уменьшении Ip ниже 100 мкА возможен спонтанный срыв разряда в рабочем объеме (из - за понижения давления, напряжения на электродах и пр.). В силу этих условий при проведении экспериментов удалось получить небольшой участок кривой предшествующий насыщению.
Из рис. 3.5 видно, что при увеличении разрядного тока от 0.5 до 3 мА s растет ( более низкое значение Ip получить не удалось, так как возможен спонтанный срыв разряда в рабочем объеме, из-за понижения напряжения на электродах, давления и так далее ).
Увеличение поверхностной плотности заряда при увеличении тока подтверждает принятую теорию о образовании заряда электрета.
Влияние разрядного тока Iр мА на плотность заряда электрета s*105 Кл*м2.
|
Рисунок 3.5.
3.6.2.Влияние напряженность электрического поля на плотность заряда электрета.
Зависимости поверхностной плотности заряда в пленке фторопласта - 4 толщиной 10 мкм от напряжения и влияние напряженности импульсного поля в образце на величину и стабильность заряда приведены на рис. 3.56. Амплитуда импульсов, подаваемых на рабочий электрод изменялась в широких пределах от 400 В до значений, соответствующим предпробивным полям в пленке. Электрическая схема импульсного усилителя, кроме того позволяет изменять полярность импульсов относительно потенциала плазмы. Следует заметить, что повторяемость результатов при поляризации в плазме гораздо лучше, чем при использовании других методов, и ограничена только идентичностью параметров образцов.
В отсутствии электрического поля в пленке измеренная величина заряда соответствует энергии хаотического движения электронов в плазме ( пристеночный потенциал ) и составляет примерно 3×10-5 Кл×м-2. Из рис. 3.6 видно, что при увеличение амплитуды импульсов положительной полярности до 1000 В приводит к увеличению значений начального и стабильного заряда, причем его максимальная величина соответствует напряжению примерно 1000 В. Дальнейший рост напряжения вызывает спад начального и в особенности стабильного (Рис. 3.6) заряда за счет увеличения сквозных токов и разрушения поверхности образца ( пробой ).
Влияние напряженноси Е*107 В/м на плотность заряда электрета s*105 Кл/м-2.
|
Рисунок 3.6.
3.6.3.Влияние продолжительности процесса электретирования на плотность заряда электрета.
Влияние времени электретирования исследовалось в интервале от 1 мин до 20 мин, график зависимости представлен на рис. 3.7. Из графика видно, что максимальное значение начального заряда наблюдается при tэ= 1 мин.
При изменении времени выдержки с 1 мин до 5 мин, как видно из графика , заряд электретной мембраны растет и достигает насыщения при t’=5 мин. Превышение указанного времени электретирования вызывает спад заряда. Такой характер зависимости объясняется сильным разогревом пленки под действием плазмы, что приводит к значительным структурным изменениям. Визуальный осмотр показывает, что изменение цвета пленки при длительности выдержки превышающей 5 мин , а при tэ более 20 мин наступает полное разрушение образца.
Влияние времени электретирования Т мин. на плотность заряда электрета s*105 Кл*м2.
|
Рисунок 3.7.
3.6.4.Влияние повторного электретирования на плотность заряда электрета.
Для выяснения возможности возникновения ловушек при обработке мембран в плазме газового разряда был произведен опыт по повторному электретированию. На рис. 3.8 приводятся зависимости для нескольких повторов электретирования.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12