. (1.7)
Другая неточность барьерной модели, в том то что она рассматривает дрейф носителей в электрическом поле с постоянной напряженностью E. В действительности дрейф электронов происходит в самосогласованном электрическом поле, величина которого уменьшается по мере релаксации гомозаряда.
В этом случае постоянная релаксации гомозаряда t является функцией времени, что должно приводить к более сложному виду экспоненциальной зависимости . Учет этого обстоятельства позволяет объяснить замедленный начальный спад гомозаряда по сравнению с рассчитываемым. Связать величину гомозаряда и время его релаксации можно на основе следующей системы
(1.8)
Согласно развитию модели стабильность гомозаряда также должна сильно зависеть от ориентации поверхностных диполей и степени деформации цепочек молекул. Уже проводились исследования релаксации гомозаряда в пленках неполярных диэлектриков, которые показали снижение временной стабильности заряда под действием переменных электрических полей. Также о влиянии дипольного строения поверхности фторопласта на процессы старения электрета можно судить по ряду методов ускоренной стабилизации внедренного заряда.
Так предлагалось стабилизировать гомозаряд импульсной формовкой при электретировании в низкотемпературной плазме. Суть метода состоит в следующем. Во время электретирования (3 мин.) на управляющий электрод подаются импульсы чередующейся полярности со скважностью 1200 Гц. По объяснению высказанному в , во время отрицательного полупериода импульса слабо закрепленные электроны выбрасываются из ловушек сильным электрическим полем с напряжением 100—500 В. Однако в таком случае аналогичный эффект стабилизации заряда было бы достигнут трехминутной выдержкой образцов в поле 100—500 В после электретирования. Кроме того вырывание слабосвязанных электронов с ловушек под действием внешнего поля обязательно проявилось бы при измерении поверхностной плотности заряда компенсационным методом. Поскольку такие явления не наблюдались стабилизация гомозаряда имеет другую природу.
Подобный механизм ускоренного старения заряда в пленках ПТФЭ уже предлагался. Заряженные образцы политетрафторэтилена предлагалось выдерживать в переменном поле небольшой напряженности (5—10 В, 1000 Гц) в течении нескольких часов. Энергии таких полей явно недостаточно для активации электронов из ловушек и объяснение стабилизирующего действия слабых переменных полей не было дано.
Указанные процессы находят логическое объяснение в соответствии с положением о существовании на поверхности политетрафторэтилена ориентированных диполей. Прикладываемое к образцам переменное электрическое поле увеличивает амплитуду колебаний дипольных участков молекул на поверхности диэлектрика, а подобное интенсивное молекулярное движение ведет к выталкиванию захваченных электронов с ловушек и, после их рекомбинации, к снижению величины гомозаряда. Также в литературе упоминается изменение свойств электретных пленочных мембран при увеличении степени их натяжения, то есть при изменении деформации молекулярных цепочек, приводящее к ускоренному спаду заряда. Аналогичное явление быстрого спада гомозаряда в мембранах наблюдалось при попытке изготовления головных телефонов на базе заряженных пленок политетрафторэтилена. Создание в пленках политетрафторэтилена ультразвуковых механических упругих деформаций приводило к выбросу электронов с ловушек 0,5—0,6 эВ и ускоренному спаду эффективной поверхностной плотности заряда. Причем увеличение интенсивности ультразвукового воздействия приводило к нелинейному снижению уровня стабильного заряда. Суммируя наблюдаемые экспериментальные данные можно сказать, что любые воздействия, приводящие к увеличению амплитуды колебаний молекулярных цепочек или их фрагментов (повышение температуры, механическая деформация, электрические или магнитные поля и т. п.), будут способствовать освобождению захваченных этими молекулами электронов и ускоренному спаду гомозаряда. Следует отметить, что уже предпринимались попытки связать характерные особенности электретного эффекта в пленках фторопласт–4 и фторопласт–10 со структурой и дефектами структуры материала. При этом также предполагалось существование дипольных структур вблизи поверхности пленок. Предполагалось, что внедренные при электретировании электроны захватываются глубокими ловушками, а с более мелких локальных уровней за счет флуктуаций теплового движения освобождаются дырки. Пара электрон—дырка образует квазидиполь и в целом электрет нейтрален. При поляризации диэлектрика квазидиполь направлен противоположно внешнему полю и ничем не отличается от обычных дипольных молекул. Под действием сильных флуктуаций теплового движения электрон высвобождается из ловушки и диполь разрушается. Разрушение квазидиполей электрон—дырка происходит также при изменении надмолекулярной структуры фторопластов и при фазовых переходах. Однако модель основывается на предположении, что в материале изначально на ловушках находятся дырки в концентрации достаточной для нейтрализации внедренных электронов. Кроме того, накопление свободных дырок вблизи поверхности, где сосредоточен гомозаряд, при образовании квазидиполей должно приводить к резкому падению поверхностного сопротивления материала, что не отмечалось в практических исследованиях.
Согласно этой модели электрет представляет собой многослойную структуру. Инжектированный в приповерхностный объем электронный заряд компенсируется положительным пространственным зарядом в объеме диэлектрика и экранирующим слоем ионов. Рекомбинации внедренных электронов с ионами экранирующего слоя препятствует приповерхностный буферный слой из дипольных участков молекул ориентированных инжектированным зарядом. Для подтверждения развития модели и определения структуры внедряемого гомозаряда целесообразно исследовать спектр энергетических ловушек в политетрафторэтилене. Это позволит связать структурные особенности полимера с процессами накопления и релаксации в нем электронного гомозаряда. Необходимость получения полной информации об энергетических спектрах требует проводить исследования в режиме максимального заполнения ловушек. В связи с этим в следующей главе производится поиск оптимального режима электретировани пленок ПТФЭ в плазме газового разряда для получения максимальной поверхностной плотности гомозаряда.
2.Технико - экономическое обоснование проекта.
Важнейшей задачей электронной техники в настоящее время является миниатюризация приборов и элементов, обеспечение минимального веса, высокой чувствительности и экономичности. Это возможно с помощью применения новых материалов и физических явлений. В частности в качестве постоянных магнитов используются пленочные электреты, что позволяет решить многие проблемы.
Но несмотря на все достоинства их применение до сих пор ограничено, в следствии нестабильности заряда, изменения характеристик под действием окружающей среды, плохой воспроизводимости результатов электретирования.
Целью данной дипломной работы является подтверждение модели образования заряда электрета на основе неполярного диэлектрика, проведение оптических исследований, и исследования влияния внешних факторов на величину заряда электрета. Производилась разработка новой ячейки для электретирования мембран диаметром 10 мм., с последующим их применением в электретном микрофоне, который является составной частью диагностического комплекса по измерению проходимости бронхов.
Применение датчиков на основе электретов нашло широкое применение в повседневной жизни, что делает тему данной работы весьма актуальной.
3.Экспериментальная часть.
3.1.Методика получения электретов в плазме.
В данном разделе мы должны рассмотреть способы получения электретированных мембран, проверить воспроизводимость результатов электретирования, рассмотреть влияние окружающей среды на величину и стабильность заряда электрета. Провести оптические исследования электретированных пленок фторопласта, которые должны подтвердить теорию образования гомозаряда. Конечной целью является получение электретированных мембран, для создания электретного микрофона необходимого для диагностической установки по тестированию проходимости бронхов.
Для исследований мы выбрали фторопласт - 4, который является одним из лучших высокополимеров, созданных на основе химического синтеза. Пленки ПТФЭ обладают наиболее стабильными во времени электретными свойствами,
способностью к холодному течению и высокая пластичность материала при низких температурах.
ПТФЭ обладает высокой степенью кристалличности (количество кристаллической фазы доходит до 40—85 %). Кристаллизация ПТФЭ начинается при охлаждении ниже 327 °C, причем наибольшая скорость кристаллизации наблюдается при 310 °C.
В идеальном случае ПТФЭ является неполярным полимером. Диэлектрическая проницаемость пленок ПТФЭ составляет 1,8—2,2 на частоте 1 кГц, а тангенс угла диэлектрических потерь на частоте 1 Мгц.
Пленки ПТФЭ прозрачны для видимого света и ультрафиолетового излучения. ПТФЭ мало устойчив к g– и b–облучению. При этом его механические свойства резко ухудшаются.
Таким образом несмотря на то, что ПТФЭ является в целом неполярным полимером, на его поверхности и в приповерхностном объеме существуют дипольные участки молекул, что должно учитываться при рассмотрении динамики процессов инжекции и релаксации гомозаряда. В процессе электретирования при взаимодействии плазмы с поверхностью ПТФЭ может происходить изменение концентрации дипольных частей молекул.
Многочисленные данные по исследованию зависимости поверхностного плотности заряда от времени хранения показывают, что наиболее стабильным в заполяризованном диэлектрике является гомозаряд.
Согласно представлениям о природе гомозаряда, его образование в случае термоэлектретирования связано с инжекцией в поверхностные слои диэлектрика свободных зарядов из электродов и из воздушного зазора в случае его ионизации. В работе [12] отмечается увеличение гомозаряда примерно в 15 раз при поляризации с прокладками по сравнению с контактными методами электретирования. Локальный характер микропробоев в зазоре при термоэлектретировании является причиной неравномерного распределения зарядов по поверхности образца и недостаточной повторяемости зарядов.
Анализ физической модели образования гомозаряда приводит к предположению о возможности успешного использования в качестве инжектирующего электрода высоко ионизированной внешней среды – плазмы газового разряда. Действительно, высокая концентрация зарядов в плазме, возможность ее регулирования путем изменения тока в разрядном промежутке, создают реальные предпосылки для получения в диэлектрике высокого по величине и равномерного по поверхности гомозаряда. Более подробно мы рассмотрим явления на границе диэлектрик – плазма.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12