Значительное увеличение плотности поверхностного заряда наблюдалось при двукратном и трехкратном электретировании образца. При дальнейших обработках плотность поверхностного заряда электрета практически не менялась. Также из рис. 3.8 видно, что прирост плотности поверхностного заряда снижается с увеличением времени электретирования и практически отсутствует при повторных обработках в течение 5 минут.
Отжиг после электретирования приводит к определенному уменьшению заряда электрета, который становится более стабильным по сравнению с зарядом в неотожженнном образце. Путем повторений операций электретирования и отжига удается превысить первоначальную плотность заряда и повысить его стабильность. Влияние подогрева образцов как в процессе электретирования, так и после него сводится к повторному захвату носителей более глубоко расположенными уровнями.
Влияние повторного электретирования на плотность заряда электрета.
Рисунок 3.8.
n электретировали в течении 5 минут, - электретировали в течении 3 минут, - электретировали в течении 1 минуты.
3.6.5.Влияния деформации пленки ПТФЭ на плотность заряда электрета.
Было проведено исследование влияния деформации пленки ПТФЭ на величину заряда. Для этого заряженные мембраны закреплялись на специальном электроде в установке для измерения заряда. И с помощью подачи электрического переменного сигнала заставили мембрану совершать механические колебания представленные на рис. . при увеличении времени колебания наблюдалось уменьшение эффективной поверхностной плотности заряда. Измерение заряда производилость бесконтактным методом.
Уменьшение заряда электрета можно объяснить тем, что при больших механических деформациях пленки происходит изменение поверхностной ориентации диполей, и уменьшение поля диполей. Поэтому часть электронов может освобождаться из ловушек, релаксируя тем самым уменьшая заряд электрета рис. 3.9 и 3.10.
Влияние времени деформации на плотность заряда электрета.
Рисунок 3.9.
Влияние амплитуды колебаний на величину заряда электрета.
Рисунок 3.10.
3.6.6.Влияние давления на плотность заряда электрета.
На рис. 3.11 показана зависимость поверхностной плотности заряда от давления в разрядном промежутке. Снятие зависимости проводилось для интервала давлений от 10-2 до 10-1 мм рт. ст. Данный выбор диапазона объясняется тем, что равномерное распределение плазмы над пленочным образцом достигается при разрежении в рабочем объеме 10-2—10-1 мм рт. ст. Увеличение давления выше 10-1 мм рт. ст. приводит к возникновению явления контракции разряда и, как следствие, к неравномерному распределению гомозаряда по поверхности образца. Уменьшение давления ниже 10-2 мм рт. ст. сопровождается резким возрастанием напряжения возникновения тлеющего разряда. Кроме того, снижение давления до 10-2 мм рт. ст. приводит к уменьшению концентрации носителей заряда в плазме, что требует увеличения времени электретирования.
. ст. изменения поверхностной плотности гомозаряда будут незначительны.
Влияние давления Р ,мм. рт.ст. на плотность заряда электрета s*105 Кл*м2 (давление изменяется в пределах от 10-1 до 7*10-2 мм рт. ст.).
|
Рисунок 3.11.
3.7.Оптические исследования электретированных пленок фторопласта.
Cтабильный электретный заряд в неполярных диэлектриках создается благодаря инжекции электронов из плазмы в приповерхностные слои и локализации их в центрах захвата. Следовательно, процесс электретирования должен приводить к изменению энергетического спектра электронов.
В связи с этим в энергетическом интервале соответствующем видимой области спектра, проведены исследования оптических спектров пропускания электретов на основе пленок ПТФЭ. Оптический метод дает обширную информацию о веществе. Наряду с этим он ценен тем, что обладает рядом преимуществ по сравнению с электрическими методами. Среди них следует выделить возможность исследования без нарушения электретного эффекта, а следовательно, без искажения его характеристик.
Для определения параметров зарядов, снимались спектры пропускания в видимой и ультрафиолетовой областях спектра. В этих целях использовался прибор CФ - 26. Спектрометр предназначен для измерения коэффициента пропускания жидких и твердых веществ в области спектра от 186 до 1100 нм. Спектрофотометр рассчитан для измерения коэффициента пропускания исследуемого образца Т, равного отношению интенсивности потока излучения, прошедшего через измеряемый образец , к интенсивности потока излучения падающего на образец или прошедшего через контрольный образец, коэффициент которого принимается за единицу.
Измерение производится по методу электрической автокомпенсиции. В монохроматический поток поочередно вводят контрольный и измеряемый образцы. При введение контрольного образца стрелка измерительного прибора устанавливается на отметке “100” регулировкой ширины щели, и установившееся значение принимают за 100% пропускания. При введении в поток измеряемого образца стрелка измерительного прибора отклоняется пропорционально изменению потока, величина коэффициента пропускания отсчитывается по шкале в процентах пропускания.
Для исследования были выбраны пленочные электреты из фторопласта–4, полученные в импульсном режиме в плазме. Электретирование производили при токе = 2,5 мА, напряжении = 5кВ, время электретирования 2 минуты.
Обнаружено, что спектры исследованных образцов имеют сложную структуру. Они отличаются величиной пропускания в области полос поглощения, которые ярко выражены в видимой области (рис. 3.12).
На рис. 14 представлен спектр пропускания в относительных единицах Тэл / Тн.эл. электретированных фторопласта – 4 толщиной 10 мкм в широком диапазоне длин волн.
Приведенные данные отображают положение спектров пропускания для (поглощения) для большого количества образцов фторопласта, электретированных в плазме.
Наличие локальных полос поглощения в области прозрачности свидетельствует о том, что в исследованных областях под действием светового облучения происходят электронные переходы в зону проводимости с энергией активации, меньшей ширины запрещенной зоны.
В результате исследований получено, что спектры электретированных пленок отличаются от спектров неэлектретированных пленок ПТФЭ. В спектрах поглощения электретированных пленок возникают новые максимумы, что соответствует появлению новых ловушек. Следовательно, в процессе электретирования в плазме газового разряда в пленках политетрафторэтилена происходит образование новых, вероятно в следствии поворота диполей.. Таким образом, оптические исследования пленочных электретов , полученных в плазме, подтверждают существующую модель образования заряда электрета.
Спектр пропускания в относительных единицах Тэл/Тн.эл для пленок фторопласта толщиной 10 микрон.
|
Рисунок 3.12.
3.8.Области применения электретных преобразователей
Способность диэлектриков длительно сохранять наэлектризованное состояние широко используется в целом ряде отраслей народного хозяйства. В настоящее время эффекты, связанные с удержанием зарядов, уже вышли за рамки технических применений и идет изучение возможностей их применения в биологии и медицине. Состояния этих исследований, разработка приборов, в основе действия которых лежат электретные явления, находятся на разных уровнях своего развития. Расширяющееся применение электретов в различных областях обусловлено как техническими преимуществами устройств на основе этого эффекта, так и экономическими соображениями использования диэлектриков.
В целом можно выделить следующие области применения электризованных диэлектриков:
– звуковая акустика (микрофоны, телефоны, вызывные устройства телефонии и сигнализация);
– ультразвуковая акустика (гидроакустика, медицина, дефектоскопия);
– функциональная электроника самого различного назначения (реле, приводные устройства робототехники, электромоторы и т.п.);
– устройства, в которых используется взаимодействие внешнего поля электретов с электрическими зарядами окружающей среды (электретные фильтры для очистки газовых потоков, ионизационные камеры для дозиметрии, электретные элементы для медико–биологического воздействия).
Особое место занимает применение электретов в электроакустике. Практически все микрофоны для телефонии, бытовой электронной аппаратуры, сурдотехники в настоящее время являются электретными.
Электретные микрофоны обладают рядом достоинств. Они имеют широкий частотный диапазон, который распространяется на интервал от нескольких мГц до сотен МГц. Кроме этого, они обладают равномерной частотной характеристикой, низким уровнем нелинейных искажений, низкой вибрационной чувствительностью, хорошими импульсными характеристиками, не подвержены действию электрического поля и просты в изготовлении. Электретно–пленочные микрофоны имеют еще три дополнительных преимущества по сравнению с обычными конденсаторными микрофонами:
– они не требуют для работы постоянного смещения;
– имеют более высокую емкость на единицу площади благодаря использованию пленочных диэлектриков и очень узких воздушных зазоров;
– нечувствительны к закорачиваниям, вызываемым присутствием водяного конденсата.
Хорошие характеристики, простота и дешевизна предопределили широкое использование электретных микрофонов в различных сферах.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12