Требования к ФНЧ-прототипу
Для того чтобы не было привязки начального этапа расчета к конкретным значениям частоты и, следовательно, приводимые в справочниках таблицы и графики имели большую общность, осуществляется нормировка частотной оси и ее трансформация таким образом, чтобы свести характеристики ФНЧ, ФВЧ, ППФ, ПЗФ к характеристикам эквивалентного ФНЧ-прототипа.
Амплитудно-частотная характеристика ФНЧ-прототипа определена на нормированной оси частот, причем граничная частота полосы пропускания , а граничная частота полосы задержания . В качестве нормирующей частоты для ФНЧ и ФВЧ выбирается граничная частота полосы пропускания , а для ППФ и ПЗФ – центральная частота полоса пропускания (задержания) . Формулы для вычисления нормированных частот синтезируемого фильтра и его ФНЧ-прототипа приведены в таблице 2.1.[1] Обозначение частоты с тильдой () относится к проектируемому фильтру, а без тильды () – к ФНЧ-прототипу. При синтезе ППФ и ПЗФ определяется коэффициент геометрической асимметрии , в зависимости от значения, которого по-разному вычисляют нормированные частоты. Важно проконтролировать, чтобы всегда выполнялись условия: и . В противном случае невозможно правильное преобразование ППФ и ПЗФ из ФНЧ-прототипа.
Итак, требования к АЧХ ФНЧ-прототипа найдены. Они выражаются тремя параметрами: , и .
Порядок, нули и полюсы ФНЧ-прототипа
Минимальный порядок ФНЧ-прототипа, необходим для того, чтобы его АЧХ укладывались в коридор допусков, определяется с помощью специальных графиков, которые можно найти в справочнике. Из нужной таблицы и подходящей строки необходимо выписать нормированные координаты нулей и полюсов. Нули лежат на мнимой оси плоскости комплексной частоты .
Нули и полюсы синтезируемого фильтра
Пересчет координат нулей и полюсов ФНЧ-прототипа в соответствующие параметры синтезируемого фильтра осуществляется по формулам, приведенным в таблице 2.4.[2] При этом следует обратить внимание на следующие моменты:
1. Данные формулы получены на основе правил замены комплексных переменных при переходе от ФНЧ-прототипа к другим видам фильтров;
2. Каждый полюс или нуль при переходе от ФНЧ-прототипа к ППФ или ПЗФ порождает два полюса или два нуля, так что порядок синтезируемого фильтра по сравнению с прототипом увеличивается в два раза;
3. Помимо нулей, вычисленных по приведенным формулам, появляются дополнительные нули , количество которых (кратность) равна разности между числом полюсов и нулей в ФНЧ-прототипе; сказанное справедливо для ФВЧ и ППФ и обусловлено пересчетом в начало координат - плоскости - кратного нуля ФНЧ-прототипа, расположенного в бесконечности;
4. При переходе к ПЗФ каждый из нулей ФНЧ-прототипа, находящихся в бесконечности, пересчитывается в пару нулей ;
5. В результате пересчетов оказывается, что для ФНЧ и ПЗФ количество нулей равно количеству полюсов, а для ППФ число нулей на меньше число полюсов;
6. При вычислении полюсов ППФ и ПЗФ группируются значения и с разными индексами "+" и "–", в результате чего полюс, расположенный на - плоскости ближе к мнимой оси, имеет меньшую частоту.
Передаточная функция и АЧХ.
Располагая координатами нулей и полюсов синтезируемого фильтра, можно записать передаточную функцию:
, (2.1)
где - количество нулей, - количество полюсов синтезируемого фильтра, - нормировочный коэффициент. Диаграмма нулей и полюсов определяет передаточную функцию с точностью до постоянного множителя, но на форму АЧХ это не оказывает влияния. АЧХ удобно представлять в нормированном виде. С этой целью коэффициент выбирается таким, чтобы . Значения коэффициента для различных видов приведены в таблице 2.5.[3] В ней - это коэффициент, взятый из последней колонки таблицы справочника, - параметр преобразования для ППФ и ПЗФ, - порядок ФНЧ-прототипа. Итак, для фильтра Чебышева ППФ значение коэффициента .
Расчет.
Заданные технические требования представлены как Таблица 1.
Тип фильтра
, [дБ]
, [дБ]
, [кГц]
, [кГц]
, [кГц]
, [Ом]
Чебышев
35
1.25
100
120
150
50
Отталкиваясь от таблицы 2.1[4], рассчитаем нормированные частоты синтезируемого фильтра:
, ;
, ;
, ;
, ;
, ;
, ;
, ;
Коэффициент геометрической асимметрии равен 1. А центральна циклическая частота полосы пропускания .
После проведенного анализа данных с помощью справочника, были определены параметры: тип, порядок фильтра, полюсы и нули ФНЧ-прототипа, а также нормированные значения элементов цепи.
Таблица 2
Порядок фильтра
0.447
0.327
1
1.614
1.55
0.151
0.972
2
1.610
0.836
Отталкиваясь от таблицы 2.4[5], рассчитаем полюсы и нули необходимого нам ППФ.
Нули
Полюсы
,
,
где
,
,
,
.
, ,
где , ,
, ,
, , ,
, ,
Полученные значения запишем как Таблица 3 и отобразим на диаграмме нулей и полюсов.
Полюсы и нули.
полюсы
0,077029470702035
0,93850000456136
0,086870529297965
1,05840000456136
0,022824923789752
0,83718784570175
0,032541742876915
1,19358784570175
нули
0
0
0
0
Теперь с помощью формулы 2.1, где , , а , по полученным полюсам и нулям построим АЧХ ППФ, причем АЧХ равно .
Реализация аналогового фильтра.
Лестничная - структура.
Теория.
- фильтр с лестничной структурой представляет собой пассивную линейную цепь, построенную путем соединения индуктивностей и емкостей. Такая схема имеет многочисленные внутренние связи. Метод расчета лестничных структур предполагает переход к операторной схеме замещения цепи. Запись ее передаточной функции и сравнение выраженных через элементы схемы коэффициентов полиномов в числителе и знаменателе передаточной функции с коэффициентами полиномов передаточной функции, полученной на этапе аппроксимации. Решение сформированной системы уравнений позволяет определить значения элементов схемы. Такие расчеты выполнены на ЭВМ, а их результаты занесены в справочник.
При реализации - структуры следует совершить следующие шаги:
1. Выписать из таблицы справочника нормированные значения элементов схемы ФНЧ-прототипа;
2. Вычислить, используя выписанные значения, величины элементов ППФ;
3. Денормировать значения элементов;
4. Составить принципиальную схему фильтра.
В схемах могут использоваться идеальные и реальные источники тока или напряжения, применяемые для ввода входного сигнала. Все элементы нормированы относительно сопротивления нагрузки и граничной частоты полосы пропускания. Порядок фильтра определяется числом последовательных ветвей (звеньев), которые для удобства пронумерованы.
При проектировании ФВЧ, ППФ, ПЗФ необходимо пересчитать значения элементов схемы ФНЧ-прототипа в значения элементов синтезируемого фильтра и нарисовать его схему. С этой целью нужно обратится к таблице 3.1.[6]
Чтобы получить реальные величины индуктивностей и емкостей, следует провести операцию денормирования значений элементов. Отношение сопротивления нагрузки к реальному сопротивлению индуктивности или емкости сохраняется в нормированном и денормированном виде, а именно:
, .
Отсюда находим формулы для денормирования емкостей и индуктивностей: