Схемотехника аналоговых электронных устройств

.

         Данное выражение получено на основе разложения в ряд Тейлора функции нескольких переменных , где

.

         Пренебрегая частными производными второго и более порядка, получаем связь функции чувствительности и отклонения параметра :

.

         Существуют разновидности функции чувствительности:

         ¨ абсолютная чувствительность , абсолютное отклонение при этом равно ;

         ¨ относительная чувствительность , относительное отклонение равно ;

         ¨ полуотносительные чувствительности , .

         Выбор вида функции чувствительности определяется видом решаемой задачи, например, для комплексного коэффициента передачи  относительная чувствительность равна относительной чувствительности модуля (действительная часть) и полуотносительной чувствительности фазы (мнимая часть):

.

         Для простых схем вычисление функции чувствительности может осуществляться прямым дифференцированием схемной функции, представленной в аналитическом виде. Для сложных схем, получение аналитического выражения схемной функции представляет собой сложную задачу, возможно применение прямого расчета функции чувствительности через приращения. В этом случае необходимо проводить n анализов схемы, что для сложных схем весьма нерационально.

         Существует косвенный метод расчета чувствительности по передаточным функциям, предложенный Быховским [17]. Согласно этому методу, функция чувствительности, например, прямого коэффициента передачи равна произведению функций передачи с входа схемы до элемента, относительно которого ищется чувствительность, и передаточной функции "элемент - выход схемы" (рисунок 8.4а).


         Так как расчет функции чувствительности сводится к расчету передаточных функций, то для их нахождения возможно применение, например, обобщенного метода узловых потенциалов. Косвенный метод расчета по передаточным функциям позволяет находить функции чувствительности более высоких порядков. На рисунке 8.4б проиллюстрировано нахождение функции чувствительности второго порядка. В общем же существует n! путей передачи сигнала, каждый из которых содержит n+1 сомножителей.

         Ниже описывается метод расчета функции чувствительности, сочетающий прямой метод дифференцирования и косвенный по передаточным функциям, позволяющий за один анализ находить чувствительность к n элементам схемы [18]. Рассмотрим данный способ на примерах получения выражений для абсолютной чувствительности первого порядка S-параметров электронных схем, описанных матрицей проводимости [Y].

         В матричном представлении характеристики электронных схем, в том числе и параметры рассеяния [S], определяются в виде отношений алгебраических дополнений матрицы [Y] (см. подраздел 7.2). Изменяемый параметр входит при этом в некоторые элементы алгебраических дополнений. Определение функции чувствительности сводится в этом случае к нахождению производных от отношений алгебраических дополнений (или алгебраических дополнений и определителя) по элементам, в которых содержится изменяемый параметр. В случае, когда изменяемый параметр входит в элементы дополнений  определителя функционально, чувствительность определяется как сложная производная.

         Для определения производных алгебраических дополнений по изменяемым параметрам входящих в них элементов воспользуемся теоремой, утверждающей, что производная определителя по какому-либо элементу равна алгебраическому дополнению этого элемента. Доказательство теоремы основано на разложении определителя по Лапласу

.

         Общее выражение для S-параметров через алгебраические дополнения имеет вид (см. подраздел 7.2)

.

         Определим функции чувствительности параметров рассеяния к пассивному двухполюснику  включенному между произвольными узлами k и l (см. рисунок 8.5а)

 

При получении данного и последующих выражений используются следующие матричные соотношения [3]:

,

.

         Для электронных схем, содержащих  БТ, моделируемые ИТУТ (см. подраздел 2.4.1), определим чувствительность S-параметров к проводимости управляющей ветви  и параметру управляемого источника a включенных соответственно между узлами k, l, и p, q (рисунок 8.5б):

         Если электронная схема содержит ПТ, моделируемые ИТУН (см. подраздел 2.4.1), то чувствительность параметров рассеяния к крутизне S, включенной между узлами p, q при узлах управления k, l (рисунок 8.5в), равна

         Чувствительность параметров рассеяния к любому Y-параметру подсхемы (рисунок 8.5г), например, , будет равна

         При известной чувствительности  к параметру элемента подсхемы x (см. рисунок 8.5г) чувствительность S-параметров полной схемы к этому параметру, в соответствии с понятием сложной производной, выразится как

.

Последнее выражение указывает на возможность применения метода подсхем при анализе чувствительности сложных электронных схем.

         Зная связь параметров рассеяния с вторичными параметрами электронных схем ( и др.) и чувствительность параметров рассеяния к изменению элементов схемы, возможно нахождение функций

чувствительности вторичных параметров к изменению этих элементов. Например, для коэффициента передачи по напряжению с i-го на j-й узел  чувствительность к изменению параметра x (полагая, что  и ) получаем

.

         Аналогично для  () имеем

;

.

Данный способ столь же эффективно может быть использован при определении чувствительности более высоких порядков для всевозможных характеристик электронных схем. Реализация полученных таким образом алгоритмов расчета чувствительности сводится к вычислению и перебору соответствующих алгебраических дополнений, что хорошо сочетается с нахождением других малосигнальных характеристик электронных схем.


8.5. Машинные методы анализа АЭУ


В подразделе 2.3 приведена основная идея обобщенного метода узловых потенциалов, на основе которого были получены большинство соотношений для эскизного расчета усилительных каскадов. Однако наряду с несомненными достоинствами данного метода (простота программирования, малая размерность получаемой матрицы проводимости Y, n*n, где n- количество узлов схемы без опорного), данный метод имеет ряд существенных недостатков. В первую очередь следует отметить невозможность представления в виде проводимости некоторых идеальных моделей электронных схем (короткозамкнутых ветвей, источников напряжения, зависимых источников, управляемых током и т.д.). Кроме того, представление индуктивности проводимостью неудобно при временном анализе схем, что связано с преобразованием Лапласа (оператор Лапласа p должен быть в числителе для того, чтобы система алгебраических уравнений и полученная в результате преобразования система дифференциальных уравнений имела одинаковые коэффициенты).

В настоящее время наибольшее распространение получили топологические методы формирования системы уравнений электрической цепи, наиболее общим из которых является табличный [4].

В этом методе все уравнения, описывающие цепь, включаются в общую систему уравнений, содержащую уравнения Кирхгофа для токов, напряжений и компонентные уравнения.

Уравнения Кирхгофа для токов можно представить в виде

,

где  A- матрица инценденции [4], описывающая топологию цепи, - вектор тока ветвей.

Уравнения Кирхгофа для напряжений имеют вид

,

где  и  - соответственно, вектора напряжений ветвей и  узловых потенциалов,  - транспонированная матрица инценденции А.

В общем случае уравнения, описывающие элементы цепи, можно представить в следующей форме:

,

где  и - соответственно, квазидиагональные матрицы проводимости и сопротивления ветвей, - вектор, куда входят независимые источники напряжения и тока, а также начальные напряжения и токи на конденсаторах и индуктивностях.

         Запишем приведенные уравнения в следующей последовательности:

;

;

;

и представим в матричной форме

или в общем виде

TX=W.

 

         Табличный метод имеет главным образом теоретическое значение, поскольку наряду с основным достоинством, выражающимся в том, что возможно нахождение всех токов и напряжений ветвей и узловых потенциалов, имеет ряд существенных недостатков. В первую очередь следует отметить избыточность метода, приводящую к большой размерности матрицы Т. Далее следует отметить, что многие идеальные управляемые источники приводят к появлению лишних переменных. Например, входной ток управляемых напряжением источников тока и напряжения, а также входное напряжение управляемых током источников тока и напряжения равны нулю, но в данном методе они рассматриваются как переменные.

         В практическом плане чаще всего используется модификация табличного метода - модифицированный узловой метод с проверкой [4].

         Идея данного метода заключается в разделении элементов на группы; одна группа сформирована из элементов, которые описываются помощью проводимостей, для элементов второй группы такое описание невозможно. Поскольку через токи ветвей первой группы можно выразить напряжения ветвей, а напряжения ветвей через узловые потенциалы, то можно исключить из табличных уравнений все напряжения ветвей, а для элементов первой группы еще и токи ветвей. При введении дополнительных уравнений для токов в ветвях с элементами второй группы производится проверка на наличие заранее известных (нулевых) переменных. В результате такого преобразования получим уравнения модифицированного узлового метода с проверкой        

или в общем виде

,

где n- размерность матрицы проводимости  элементов первой группы (n- число узлов схемы без нулевого); m- число дополнительных уравнений для элементов второй группы; - вектор независимых источников тока; - вектор токов ветвей элементов второй группы; - вектор, куда входят независимые источники напряжения, а также начальные напряжения и токи на конденсаторах и индуктивностях, представленных элементами второй группы.

         Для упрощения программирования обычно представляют матрицу коэффициентов системы уравнений модифицированного узлового метода  в виде суммы двух матриц размерностью (n+m)*(n+m)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать