.
В матрицу G вносят все активные проводимости и коэффициенты, соответствующие частотно-независимым элементам, а в матрицу С- все частотнозависимые элементы, причем индуктивности обычно представляют элементом второй группы, т.е. сопротивлением. Далее находят решение данной системы уравнений, используя алгоритмы Гаусса-Жордана либо L/U- разложения [4].
При частотном анализе электронных схем оператор р заменяется на jw, организуется цикл по частоте, внутри которого для каждой частотной точки формируется система уравнений, которая решается относительно интересующих напряжений и токов.
При временном анализе линейных электронных схем возможно непосредственно использовать модифицированную узловую форму уравнений
.
После перехода во временную область получим
,
или
.
Решение полученной системы дифференциальных уравнений находится путем численного интегрирования. Одними из эффективных методов численного интегрирования являются методы, опирающиеся на линейные многошаговые формулы [4], к простейшим из которых относятся формулы Эйлера (прямая и обратная) и формула трапеций.
Разбив временной интервал [0,T] на конечное число отрезков h и положив , для каждого момента времени можно найти приближение к истинному решению путем применения линейных многошаговых формул:
(прямая формула Эйлера);
(обратная формула Эйлера);
(формула трапеций).
Нахождение для (n+1)-го шага вычислений возможно путем применения прямой формулы Эйлера.
Поскольку напряжение на конденсаторе и ток, протекающий через него связаны соотношением i=CdV/dt, а для индуктивности имеем V=Ldi/dt, то применение обратной формулы Эйлера равноценно переходу от емкостей и индуктивностей к их эквивалентным схемам, показанным на рисунке 8.6, в результате чего цепь становится резистивной. Такие модели индуктивности и емкости носят название сеточных (сопровождающих, дискретных) моделей.
Отыскание рабочей точки или расчет по постоянному току является первым шагом при нелинейном анализе УУ. Анализ характеристик по постоянному току схем, содержащих нелинейные сопротивления, сводится к решению системы нелинейных уравнений вида f(x)=0.
Поскольку законы Кирхгофа применимы не только к линейным, но и к нелинейным элементам, для формирования системы уравнений f(x) возможно использование уже рассмотренных табличных методов. Структура получаемых табличных уравнений будет рассмотрена ниже.
Для решения системы нелинейных уравнений f(x) применяется метод Ньютона-Рафсона [4]. Метод предусматривает использование начального приближения , проведение итерационной процедуры и, если величина достаточно мала, констатацию факта сходимости (n- количество итераций):
,
где J- якобиан (матрица Якоби) размерностью (m*m)
.
В процессе итерационной обработки данной системы уравнений на каждом этапе итерации могут быть получены значения и J; это эквивалентно решению линейного уравнения в форме
.
Другими словами, решение нелинейных уравнений можно интерпретировать как повторное решение линейных уравнений на каждом этапе итерационного процесса.
Структура якобиана внешне совпадает с табличными уравнениями линейных цепей, которые преобразованы с учетом расчета по постоянному току - убраны конденсаторы и закорочены катушки индуктивности.
Пусть табличные уравнения заданы в следующей форме:
;
;
;
Система уравнений определяет связь между токами и напряжениями ветвей в неявной форме, некоторые из этих зависимостей могут быть линейными.
Матрица Якоби на n-й итерации будет иметь вид
,
где ; где .
Для формирования якобиана возможно использование различных модификаций табличного метода, в том числе и модифицированного узлового с проверкой. Результат анализа схемы по постоянному току (режим по постоянному току) может быть использован в качестве начального приближения при временном анализе нелинейных электронных схем.
Нелинейные уравнения легко включаются в уравнения цепи, составленные табличным или модифицированным узловым методом. Линейные элементы, как и прежде, линейными компонентными уравнениями. Для нелинейных уравнений характерны уравнения в неявной форме, хотя иногда нелинейности можно описать и в явной форме. Нелинейные емкости и индуктивности лучше всего описывать с помощью дополнительных переменных - электрических зарядов и магнитных потоков соответственно, которые должны быть введены в вектор неизвестных. Если это проделать, то уравнения, записанные как табличным, так и модифицированным узловым методами можно представить в следующем виде:
,
где E и G- постоянные матрицы, а все нелинейности сведены в вектор p(x).
Полученная система дифференциальных уравнений решается путем интегрирования с использованием формулы дифференцирования назад [4] и алгоритма Ньютона-Рафсона, для чего формируется якобиан. В целом структура якобиана для линейной и нелинейной цепи идентична, отличие между ними в том, что нелинейная емкость (индуктивность) будет представлена двумя уравнениями, а заряд q (поток f) станет еще одним неизвестным. Однако и для линейных емкостей и индуктивностей можно ввести заряды и магнитные потоки в качестве переменных, что приведет к совпадению якобиана и матрицы системы уравнений. Любая нелинейная проводимость появится в якобиане аналогично линейной проводимости в матрице С модифицированного узлового метода. Таким образом становится возможным единый подход к формированию и решению уравнений линейных и нелинейных цепей с целью получения их временных и частотных характеристик, что и успешно реализуется в современных пакетах схемотехнического проектирования.
Более подробно перечисленные методы, а также другие вопросы анализа электронных цепей приведены в [4]. В [19] описан один из пакетов схемотехнического проектирования Electronics Workbench.
9. ЗАКЛЮЧЕНИЕ
Ограниченный объем данного пособия не позволил в полной мере отразить весь круг вопросов построения и анализа АЭУ. При необходимости следует обращаться к литературе, ссылки на которую имеются в каждом разделе пособия. При выполнении расчетных заданий, лабораторных работ и курсового проекта следует пользоваться соответствующими учебными пособиями и методическими рекомендациями [19, 20].
Список использованных источников
1. Титце У., Шенк К. Полупроводниковая схемотехника: Справочное руководство: Пер. с нем.-М.: Мир, 1982.-512с.: ил.
2. Ленк Дж. Справочник по современным твердотельным усилителям: Пер. с англ. - М.: Мир, 1977.-500с.: ил.
3. Сигорский В.П. Анализ электронных схем. - Киев: Гос. изд. техн. лит., 1963. - 200с.: ил.
4. Влах И., Синхгал К. Машинные методы анализа и проектирования электронных схем: Пер. с англ. - М.: Радио и связь, 1988. - 560с.: ил.
5. Цыкин Г.С. Усилительные устройства. - М.: Связь, 1971. - 368с.: ил.
6. Мамонкин И.Г. Усилительные устройства. - М.: Связь, 1977. - 360с.: ил.
7. Помыткин М.П. Проектирование импульсных усилителей: Методические указания для студентов специальностей 200700, 201600. - Томск, ТИАСУР, 1970. - 44с.: ил.
8. Зелингер Дж. Основы матричного анализа и синтеза применительно к электронике: Пер. с англ. - М.: Сов. радио, 1970. - 236с.: ил.
9. Шкритек П. Справочное руководство по звуковой схемотехнике: Пер. с нем.. - М.: Мир, 1991. - 446с.: ил.
10. Аналоговые интегральные микросхемы: Справочник/ Б.П.Кудряшов и др. - М.: Радио и связь, 1981. - 160с.: ил.
11. Панин Н.П. Переменные аттенюаторы и их применение. - М.: Энергия, 1971. - 40с.: ил.
12. Игнатов А.Н. Микроэлектронные устройства связи и радиовещания. - Томск: Радио и связь, Томское отделение, 1990. - 400с.: ил.
13. Основы радиоэлектроники: Учебное пособие/ Ю.И. Волощенко и др.; Под ред. Г.Д. Петрухина. - М.: Изд-во МАИ, 1993. - 416с.: ил.
14. Игумнов Д.В., Костюнина Г.П. Полупроводниковые устройства непрерывного действия. - М.: Радио и связь, 1990. - 256с.: ил.
15. Жаркой А.Г. Расчет нелинейных искажений гармонических сигналов в транзисторных усилителях: Методические указания для студентов специальностей 200700, 201600. - Томск, ТИАСУР, 1987. - 54с.: ил.
16. Проектирование усилительных устройств: Учеб. пособие/ Ефимов В.В. и др.; под ред. Н.В. Терпугова. - М.: Высш. шк., 1982ю - 190с.: ил.
17. Гехер К. Теория чувствительности и допусков электронных цепей: Пер. с англ. - М.: Сов. радио, 1973. - 200с.: ил.
18. Красько А.С., Кологривов В.А. Оценка чувствительности параметров рассеяния с помощью обобщенного метода узловых потенциалов: Тезисы докладов Всесоюзной конференции "Исследование и разработка прецизионных измерительных комплексов и систем с использованием радиоволновых и оптических каналов связи", часть 1. - Томск: ТИАСУР, 1981. - стр.117.
19. Красько А.С. Схемотехника аналоговых электронных устройств: Компьютерный лабораторный практикум. - Томск: ТУСУР ТМЦДО, 2002. 42с.: ил.
20. Красько А.С. Проектирование аналоговых электронных устройств: Методические указания по курсовому проектированию. - Томск: ТУСУР ТМЦДО, 2000. 42с.: ил.
· см. замечания в подразделе 2.1
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22