Анализ погрешностей волоконно-оптического гироскопа

Линейно-поляризованный световой луч можно предста­вить суперпозицией двух волн, поляризованных по кругу, со взаимно противоположным вращением вектора поляри­зации и равными амплитудами колебаний. Рассмотрим распространение линейно-поляризованной волны в среде, проявляющей эффект Фарадея. Для анализа распространения волны в среде, помещенной в магнитное поле, представим волну в виде суммы двух волн, поляризованных по кругу с противоположными направлениями вращения и различными скоростями распространения:


                                                       ,                                     (2.81)


где n- и n+ - показатели преломления для волн, поляризованных по правому и левому кругу.

Фазовые задержки каждой из волн на пути l


                                                                      (2.82)

где n0 - показатель преломления среды при отсутствии магнитного поля.

Выйдя из оптически активной среды, циркулярно поляризованные волны складываются. Различные фазовые задержки для волн, поляризованных по правому и левому кругу, приводят к повороту вектора поляризации волны по отношению к вектору поляризации падающего линейно-поляризованного излучения.

Угол поворота плоскости поляризации на пути l


                    (2.83)


где Vl - постоянная Верде; Н - напряженность магнитного поля.


Обратимся теперь к контуру ВОГ. В нем даже в отсутствие магнитного поля существует взаимное двулучепреломление (см 2.2). Кроме того, взаимодействие магнитного поля индуцирует невзаимное круговое двулучепреломление, которое зависит от направления распространения луча. Это двулучепреломление суммируется с уже существующим взаимным двулучепреломлением в волокне. Именно комбинация двух двулучепреломлений в контуре В0Г определяет его чувствительность к внешнему магнитному полю. При отсутствии взаимного двулучепреломления невзаимная фазовая разность после интегрирования по замкнутому волоконному контуру будет равна нулю, поскольку интеграл по контуру тангенциальной составляющей внешнего магнитного поля равен нулю. Невзаимная фаза, накопленной в другой половине контура при учете реверса направлений распространения оптических колебаний по отношению к направлению магнитного поля. При наличии взаимного двулучепреломления эта компенсация будет неполной.














Рис 2.6. Волоконный контур, находящийся под действием внешнего однородного магнитного поля.


Таким образом, можно утверждать, что если состояние поляризации остается постоянным вдоль волокна (в отсут­ствие магнитного поля), то внешнее магнитное поле не оказывает влияния на измеряемую фазу Саньяка. В ре­альном одномодовом волокне, однако, состояние поляриза­ции изменяется случайным образом вдоль волокна.

При действии магнитного поля разность фаз противо­положно бегущих в контуре волн можно записать в виде:


                                         (2.84)


где Djс - фаза Саньяка, обусловленная вращением контура;

      Ym - разность фаз, обусловленная влиянием магнитного поля; при этом:


                        ,                                      (2.85)


где Vg - постоянная Верде; H - напряженность магнитного поля и l - длина части контура, на которой рассматривается действие магнитного поля; g1 - угол поворота плоскости поляризации на данном участке контура.


Таким образом, вместо измерения фазы Саньяка Djс регистрирующее устройство измеряет разность фаз , ис­кажаемую . Значение  зависит не только от напря­женности магнитного поля  (вследствие эффекта Фарадея), но и от угла  g1.

Если на участке контура отсутствует поворот плоскости поляризации (g1 = 0), то  также равна нулю. Наихудший случай может иметь место при g1 = p/2, когда участок контура является аналогом l/4 - пластины, преобразующей линейную поляризацию в круговую, и наоборот.

Таким образом, если состояние поляризации изменяется вдоль волоконного контура, окружающие магнитные поля могут вносить значительную ошибку при измерении фазы Саньяка. В реальном волокне, состояние поляризации является случайным ( за исключением волокон с устойчивой поляризацией), поэтому можно считать, что случайные флуктуации g1 дадут случайную ошибку прибора.

Численная оценка показывает, что для ВОГ с:


l=830 нм (Vl= 2.6 10-6 рад/А);

H=40 А/м (магнитное поле Земли)

l=5м;


ошибка измерения фазы Саньяка составляет величину порядка 0.001 рад. Следовательно влияние магнитного поля Земли может приводить к значительной ошибке в определении угловой скорости вращения.

Полученные результаты позволяют сделать вывод о том, что однородное магнитное поле за счет эффекта Фарадея вызывает ошибку в измерении угловой скорости вращения ВОГ. Эта ошибка определяет уход прибора, который зависит от величины и ориентации магнитного поля, а также от двулучепреломления волокна в контуре. Изменение любого из этих факторов будет вызывать соответствующее изменение ухода. Ошибка ВОГ, связанная с магнитным полем Земли, имеет типовое значение порядка 10 град/ч. Уменьшить эту ошибку можно путем экранирования контура от магнитного поля; кроме того, может быть также эффективным уменьшение чувствительности системы к магнитному полю путем контроля состояния поляризации волн.



3. Методы компенсации погрешностей.

 

 

3.1. Компенсация паразитной поляризационной модуля­ции  в волоконно-оптическом гироскопе

 

 

Паразитная поляризационная модуляция, сопровождающая работу волоконных и интегрально-оптических фазовых модуляторов, является серьезным фактором, ограничивающим точностные характери­стики волоконно-оптического гироскопа .

Одним из путей умень­шения паразитной поляризационной модуляции может быть изготовле­ние фазового модулятора в виде двух номинально идентичных поло­вин, между которыми устанавливается модовый конвертор, преобразую­щий поляризационные моды друг в друга. При этом дифференциальная фазовая модуляция поляризационных мод, возникшая в первой поло­вине фазового модулятора, компенсируется дифференциальной фазовой модуляцией противоположного знака, имеющей место во второй поло­вине модулятора.

При изготовлении фазового модулятора из одномодо­вого волоконного световода модовый конвертор может быть реализован с помощью соответствующим образом расположенных сжимателей во­локна, в виде двойной симметричной скрутки участка волокна определенной длины, сварного или клеевого соединения волокон с разворотом их осей двулучепреломления на 90° и т. п.

Поскольку, однако, трудно добиться полной идентичности упомянутых половин фазового мо­дулятора и условий, в которых они находятся, такой метод компенсации паразитной поляризационной модуляции во многих случаях оказыва­ется недостаточно эффективным.

Ситуация существенно улучшается, если фазовый модулятор устроен таким образом, что после конверсии поляризационных мод излучение без временной задержки снова проходит в прямом или обратном направлениях по тому же оптическому пути, что и до конверсии. Технически, по-видимому, проще обеспечить обратное прохождение излучения. Поэтому мы ограничимся рассмотрением только этой возможности, и будем называть соответствующий фазовый модулятор модулятором отражательного типа.

Матрицу Джонса модового конвертора в фазовом модуляторе отражательного типа, с точностью до множителя, можно представить в виде

 


              или                  (3.1)          



В первом случае вся картина поля поворачивается на 90°, а во втором поля мод поворачиваются навстречу друг другу. Предположим, что мы имеем дело с модовым конвертором первого типа. Обозначив матрицу Джонса отрезка волокна (или интегрально-оптического волновода), на котором осуществляется модуляция N(t), будем иметь для матрицы Джонса всего фазового модулятора M1 (t ) (штрихом обозначена операция транспонирования):



                        M1 (t) =N / (t)K1 N(t) = [detN(t )] K1                        (3.2)



При записи (3.2.) был использован тот факт, что матрицы Джонса взаимных элементов для встречных направлений распространения излучения связаны друг с другом операцией транспонирования.

Из (3.2) видно, что временная зависимость матрицы Джонса модулятора содержится только в численном фазовом множителе, откуда и

следует, что паразитная поляризационная модуляция в рассматриваемом случае отсутствует. Заметим, что при этом устраняется любой из типов паразитной поляризационной модуляции, в том числе и за счет модуляции дихроизма, причем эффективность фазовой модуляции удваивается по сравнению со случаем однократного прохождения излучения по модулирующему отрезку волокна или интегрально-оптического волновода.












 

 


Рис 3.1. Вариант включения отражательного фазового модуля-  тора в схему волоконно-оптического гироскопа.



Возможная реализация отражательного фазового модулятора с модовым конвертором первого типа на основе Фарадеевского зеркала и способ его включения в схему интерферометрического волоконно-оптического гироскопа показаны на рисунке; отражательные фазовые модуляторы 3, 3ò  , состоящие из модулирующих отрезков волокна или интегрально-оптического волновода 5, 5ò , ячеек Фарадея с углом вращения 45° 6, 6ò и зеркал 7, 7ò , выделены на этом рисунке штриховой линией.

В схеме интерферометрического волоконно-оптического гироскопа кроме контурного направленного ответвителя 1 используется еще один направленный ответвитель 4, с помощью которого и осуществляется включение в чувствительный контур 2 волоконно-оптического гироскопа одного или двух фазовых модуляторов отражательного типа.

При использовании в интерферометрическом волоконно-оптическом гироскопе двух фазовых модуляторов частоты модуляции и законы изменения фазы в модуляторах могут быть как одинаковыми, так и различными. Оптические длины путей с заходами в модуляторы 3 и 3ò могут быть либо одинаковыми, либо отличаться на величину, существенно превышающую длину когерентности источника излучения. Это открывает дополнительные возможности в обработке сигнала интерферометрического волоконно-оптического гироскопа и его конструктивных решений.    

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать