Вращение Фарадея — это другой невзаимный эффект. В случае линейно-поляризованного света полное вращение зависит от линейного интеграла тока, взятого по оптическому пути. В случае ВОГ этот интеграл равен нулю в магнитном поле Земли. Однако, более тщательное изучение взаимодействия света в волокне и магнитного поля вдоль волокна указывает на то, что истинным источником вращения является индуцированное круговое двойное лучепреломление и что упомянутый выше простой подход оказывается полезным только в том случае, если обе круговые компоненты поляризации (правая и левая) обладают одинаковыми амплитудами. Это справедливо только для случая линейно-поляризованного света.
При распространении света в волокне имеют место все возможные состояния поляризации и процент пребывания света в каждом собственном круговом поляризационном состоянии Фарадеевского ротатора изменяется вдоль оптического пути случайным образом. Это приводит в результате к определенной разности фаз для двух направлений распространения линейно-поляризованной моды на выходе.
Таким образом, ВОГ весьма чувствителен к магнитному полю Земли, и при конструировании ВОГ для измерения скорости вращения требуется магнитное экранирование (или обеспечение линейной поляризации света на всем пути в волокне). Предполагая, что магнитное поле Земли равно 27 и считая, что компенсация поля отсутствует на 5% длины волокна, можно получить значение отклонения фазы, которое эквивалентно скорости вращения Земли.
Вышеизложенные моменты включали невзаимные эффекты, индуцированные в волокне; однако, уже даже первые этапы при конструировании ВОГ с точки зрения сохранения взаимности в системе регистрации должны заключаться в том, чтобы обеспечить одинаковую длину оптических путей в ВОГ.
Из рис. 1.3. видно, что эта конфигурация не обладает свойством взаимности, так как пучок света, распространяющийся по часовой стрелке, проходит через делитель света дважды, а пучок света, распространяющийся против часовой стрелки, отражается от светоделителя дважды. Но в то же время взаимный оптический выходной путь от чувствительного контура идет в направлении обратно к источнику (от светоделителя к диоду), т. е. вдоль входного оптического пути.
Следовательно, добиться взаимности в системе регистрации можно, если поместить второй расщепитель пучка вдоль входногo оптического пути (рис. 1.5.).
Диапазон скоростей вращения, которые измеряются высокочувствительным гироскопом инерциальных систем управления, простирается от 0,1 град/ч до 400 град/ч. При LR = 100 м этим значениям скорости соответствует диапазон изменения фазы от 10 до 10 рад (рис.1.4.).
Рис 1.5. Схема ВОГ с постоянным смещением разности фаз.
К настоящему времени уже затрачены значительные усилия на увеличение чувствительности прибора к низким скоростям, и в то же время весьма мало внимания уделяется проблемам, связанным с увеличением требуемого динамического диапазона.
Как уже отмечалось, в случае необходимости измерения больших изменений интенсивности для данного изменения фазы нужно внести фазовый сдвиг p/2, т. е. интерферометр должен работать в режиме квадратуры. В этом режиме связь между изменениями интенсивности и изменениями фазы является линейной (до 1%) только до максимальных отклонений фазы в 0,1 рад. Компенсация нелинейности может быть осуществлена в самой системе регистрации, однако лишь до максимального отклонения фазы порядка 1 рад.
Существует ряд способов регистрации фазы, которые могут быть использованы при конструировании ВОГ.
Наиболее распространены схемы, где используется статическая разность фаз в 90° между двумя лучами и схемы с переменной разностью фаз в 90°.
Статическая невзаимная разность фаз между лучами, распространяющимися по часовой и против часовой стрелки, может создаваться, например, с помощью элемента Фарадея, размещаемого на одном конце волоконного контура ( рис. 1.5.). Изменения регистрируемой интенсивности на взаимном выходе соответствуют изменениям в значении относительной фазы для двух лучей, обегающих контур.
Этот способ имеет ряд недостатков. Небольшие изменения в интенсивности излучения источника эквивалентны паразитным изменениям фазы, а изменения в смещении на 90° также превращаются в эквивалентную считываемую скорость вращения.
Основываясь на принципах смещения фазы можно предложить другой принцип регистрации обладающий более высокой чувствительностью.
Относительная фаза для лучей, распространяющихся по двум направлениям, модулируется по фазе ( - p/2, p/2) на частоте 1/2Т (Т - время прохождения луча через контур). Таким образом, свет, инжектируемый в момент времени , в направлении по часовой стрелке испытывает задержку на 90°, свет, распространяющийся в направлении против часовой стрелки, не испытывает задержки (это определяется положением фазового модулятора, как показано на рис. 1.4.).
Однако, к тому моменту времени, когда движущийся против часовой стрелки луч достигнет положения фазового модулятора, смещения фазы не будет. Свет, инжектируемый по часовой стрелке в момент, времени , интерферирует с волной, распространяющейся против часовой стрелки со сдвигом фаз - 90°, и т. д.
Следовательно, результирующая волна на выходе, которая включает как эффект периодического фазового смещения (дающего в принципе постоянный уровень интенсивности на выходе), так и фазовый сдвиг из-за эффекта Саньяка, модулируется так, как это показано на рис. 1.5. Таким образом, выходной сигнал фотодетектора
При модуляции:
(1.31)
при
и
(1.32)
при
Глубина модуляции зависит от фазы, индуцированной вращением .
При создании ВОГ для модуляции обычно используется цилиндрический пьезоэлектрический датчик, вокруг которого намотано волокно. Более удобно использовать синусоидальную модуляцию относительной фазы двух противоположно бегущих лучей. Если разность фаз, индуцированная вращением, равна , то легко показать, что переменная составляющая интенсивности суммарной волны на выходе интерферометра, с учетом периодической фазовой модуляции на частоте и с девиацией будет равна
Используя стандартное разложение по Бесселевым функциям, получаем:
Таким образом регистрация на частоте модуляции дает сигнал, амплитуда которого пропорциональна ; эта величина может быть сделана максимальной, если выбрать значение , максимизирующее (т.е. 1.8 рад ).
Величина девиации является максимальной индуцированной эффективной разностью фаз между лучами, движущимися по часовой стрелке и против часовой стрелки за время цикла модуляции. При оценке этого значения надо знать не только глубину модуляции самого датчика, необходимо учитывать также пролетное время для оптического пути в волокне.
1.3. Модель шумов и нестабильностей в ВОГ.
Волоконный оптический гироскоп представляет собой достаточно сложную оптико-электронную систему. При конструировании реального прибора оптические элементы и электронные устройства должны выбираться и компоноваться так, чтобы минимизировать влияние внешних возмущений (температурных градиентов, механических и акустических вибраций, магнитных полей и др.). В самом приборе, кроме того, имеет место ряд внутренних источников шумов и нестабильностей. Условно эти шумы и нестабильности можно разделить на быстрые и медленные возмущения. Быстрые возмущения оказывают случайное кратковременное усредненное влияние (секунды) на чувствительность ВОГ; они отчетливо проявляются при нулевой скорости вращения (кратковременный шум). Медленные возмущения вызывают медленный дрейф сигнала, приводящий к долговременным уходам в считывании показаний ВОГ (долговременный дрейф).
Обобщенная модель источников шумов и нестабильностей в ВОГ показана на рис. 1.6.
Рис 1.6. Обобщённая модель шумов и нестабильностей в ВОГ.
Если исключить влияние всех источников шумов и нестабильностей в ВОГ, что, конечно возможно лишь в принципе, то всегда остаются принципиально неустранимые шумы - так называемые квантовые или фотонные шумы; их называют также дробовыми шумами. Эти шумы появляются лишь в присутствии полезного оптического сигнала на входе фотодетектора и обусловлены случайным распределением скорости прихода фотонов на фотодетектор, что приводит к случайным флуктуациям тока фотодетектора. В этом случае чувствительность (точность) ВОГ ограничивается лишь дробовыми (фотонными) шумами. Чувствительность (точность) ВОГ, определяемая дробовыми (фотонными) шумами, как и всяких других оптических информационно-измерительных систем, является фундаментальным пределом чувствительности (точности) прибора. Фотонные шумы являются следствием квантовой природы светового излучения. Применительно к оптическим системам передачи информации предельная помехоустойчивость этих систем, обусловленная фотонными шумами, была вычислена в [2].
Следуя работам [1,2], проведем оценку фундаментального предела чувствительность (точности) ВОГ.
Уровень фотонных шумов зависит от интенсивности оптического излучения, падающего на фотодетектор, и определяется флуктуациями интенсивности оптического излучения.
Полученная выше формула для интенсивности излучения на фотодетекторе позволяет записать выражение для мощности излучения, падающего на фотодетектор в виде:
, (1.33)
где Р - мощность входного в ВОГ излучения.
Если считать, что система ВОГ имеет статическое смещение по фазе p/2, то зависимость мощности от фазы Саньяка примет вид
(1.34)
Из этого выражения следует, что дробовые (фотонные) шумы, обусловленные процессом детектирования мощности излучения, связаны с появлением "фазовых" шумов и соответственно приводят к ошибке измерения угловой скорости вращения. Если фотодетектор принимает поток фотонов, то число обнаруживаемых фотонов в единицу времени является случайной величиной, распределенной по закону Пуассона (в случае использования лазерного излучателя) Математическое ожидание числа фотонов, падающих на фотодетектор, за время интегрирования Т равно средней энергии, деленной на энергию одного фотона:
(1.35)
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20