Физика (лучшее)

Найдём э.д.с. самоиндукции. Пусть по проводнику с индуктивностью L течёт электрический ток. В момент времени t1 сила этого тока равна I1, а к моменту времени t2 она стала равной I2. Тогда магнитный поток, создавае­мый током через площадь ограниченную проводником, в моменты време­ни t1 и t2 соответственно равен Ф1=LI1 и Ф2= LI2 , а изменение DФ магнитного потока равно DФ = LI2 — LI1 = L(I2 — I1) = LDI, где DI =I2— I1 — изменение силы тока за промежуток времени Dt = t2 - t1. Со­гласно закону электромагнитной индукции, э.д.с. самоиндукции равна: Подставляя в это выражения предыдущую формулу, получаем

Итак, э.д.с. самоиндукции, возникающая в проводнике, пропорциональна быстроте изменения силы тока, текущего по нему. Соотношение  представляет собой закон самоиндукции.

Под действием э.д.с. самоиндукции создаётся индукционный ток, на­зываемый током самоиндукции. Этот ток, согласно правилу Ленца, про­тиводействует изменению силы тока в цепи, замедляя его возрастание или убывание.

Энергия магнитного поля.  При протекании электрического тока по проводнику вокруг него воз­никает магнитное поле. Оно обладает энергией. Можно показать, что энергия магнитного поля, возникающего вокруг проводника с индуктив­ностью L, по которому течёт постоянный ток силой I, равна

 

Билет № 20

Фундаментальные законы природы, к числу которых относятся открытые Максвеллом законы электромагнетизма, замечательны в следующем отношении: они могут дать гораздо больше, чем заключено в тех фактах, на основе которых они получены.

Среди бесчисленных, очень интересных и важных следст­вий, вытекающих из максвелловских законов электромагнитного поля, одно заслуживает особого внимания. Это вывод о том, что электромагнитное        взаимодействие распространяется с конечной скоростью.

Согласно теории дальнодействия кулоновская сила, дейст­вующая на электрический заряд, сразу же изменится, если сосед­ний заряд сдвинуть с места. Действие передается мгновенно. С точки зрения действия на расстоянии иначе быть не может:

ведь один заряд непосредственно через пустоту <чувствует» присутствие другого.

Согласно же представлению о близкодействии обстоит совершенно иначе и много сложнее. Перемещение заряда меняет электрическое поле вблизи него. Это переменное электрическое поле порождает переменное магнитное поле в соседних областях пространства. Переменное же магнитное поле в свою очередь порождает переменное электрическое поле и т.д.

Перемещение заряда вызывает, таким образом, «всплеск»  электромагнитного поля, который, распространяясь, охватывает все большие и большие облас­ти окружающего пространства, перестраивая по дороге то поле, которое существовало до смещения заряда. Наконец, этот «всплеск» достигает второго заряда, что и приводит к изменению действующей на него силы. Но произойдет это не в тот момент вре­мени, когда произошло смещение первого заряда. Процесс рас­пространения электромагнитного возмущения, механизм которого был вскрыт Максвеллом, протекает с конечной, хотя и очень большой, скоростью. В этом состоит фундаментальное свойство поля, которое не оставляет сомнений в его реальности.

Максвелл математически показал, что скорость распростране­ния этого процесса равна скорости света в вакууме.

Электромагнитная волна. Представьте себе, что электриче­ский заряд не просто сместился из одной точки в другую, а при­веден в быстрые колебания вдоль некоторой прямой. Заряд дви­жется подобно грузу, подвешенному на пружине, но только коле­бания его происходят со значительно большей частотой. Тогда электрическое поле в непосредственной близости от заряда начнет периодически изменяться. Период этих изменений, очевидно, бу­дет равен периоду колебаний .заряда. Переменное электрическое поле будет порождать периодически меняющееся магнитное поле, а последнее в свою очередь вызовет появление переменного электрического поля уже на большем расстоянии от заря­да и т. д.

Мы не будем в деталях рассматривать сложный процесс об­разования электромагнитного поля, порождаемого колеблющим­ся зарядом. Приведем лишь конечный результат.

В окружающем заряд пространстве, захватывая все большие и большие области, возникает система взаимно перпендикуляр­ных, периодически изменяющихся электрических и магнитных по­лей. На рисунке 84 изображен «моментальный снимок» такой системы полей.

Образуется так называемая электромагнитная волна,. бегу­щая по всем направлениям от колеблющегося заряда.

Не надо думать, что электромагнитная волна, подобно волне на поверхности воды, представляет собой возмущение какой-либо среды. На рисунке изображены в некотором масштабе значения векторов Ё и В в различных  точках пространства, лежащих на линии Os, в фиксированный момент времени. Никаких гребней и впадин среды, как в случае механических волн на поверхности воды, здесь нет.

В каждой точке пространства электрические и магнитные поля меняются во времени периодически. Чем дальше распо­ложена точка от заряда, тем позднее достигнут ее колебания полей. Следовательно, на разных расстояниях от заряда коле­бания происходят с различными фазами.

Колебания векторов Ё и В в любой точке совпадают по фазе. Расстояние между двумя ближайшими точками, в которых колебания происходят в одинаковых фазах, есть длина волны l. В данный момент времени значения векторов Е и В меняются периодически в пространстве с периодом  l.

Направления колеблющихся векторов напряженности элек­трического поля и индукции магнитного поля перпендикулярны к направлению распространения волны. Электромагнитная волна является поперечной.

Таким образом, векторы Ё и Й в электромагнитной волне перпендикулярны друг другу и перпендикулярны направлению распространения волны. Если вращать буравчик с правой нарез­кой от вектора Ё к вектору В то поступательное перемещение буравчика будет совпадать с вектором скорости волны с.

Электромагнитные волны излучаются колеблющимися заря­дами. При этом существенно, что скорость движения таких заря­дов меняется со временем, т. е. что они движутся с ускорением.

Наличие ускорения — главное условие излучения электромагнит­ных волн. Электромагнитное воле излучается заметным образом не только при колебаниях заряда, но и при любом быстром изменении его скорости, причем интенсивность излученной волы тем больше, чем больше ускорение, с которым движется заряд.

Наглядно это можно представить себе так. При движении заряженной частицы с постоянной скоростью созданные ею элект­рическое и магнитное поля, подобно развевающемуся шлейфу, сопровождают частицу. При ускорении частицы обнаруживается присущая электромагнитному полю инертность. Поле «отрывает­ся» от частицы и начинает самостоятельное существование в форме электромагнитных волн.

Энергия электромагнитного поля волны в данный момент времени меняется периодически в пространстве с изменением векторов Ё и В. Бегущая волна несет с собой энергию, переме­щающуюся со скоростью с вдоль направления распространения волны. Благодаря этому энергия электромагнитной волны в любой области пространства меняется периодически со временем.

Максвелл был глубоко убежден в реальности электромаг­нитных волн. Но он не дожил до их экспериментального обна­ружения. Лишь через 10 лет после его смерти электромагнитные волны были экспериментально получены Герцем.

2. Принцип радиосвязи. Радиопередатчик. Для осуществления радиосвязи необходимы ра­диопередатчик и радиоприёмник. Рассмотрим принцип действия радиопе­редатчика, блок-схема которого приведена на рис. ‘77.1. Генератор создаёт высокочастотные электромагнитные гармонические колебания с частотой

v     . Пусть перед микрофоном находится звучащий камертон, создающий механические гармонические колебания звуковой частоты Yзв. Эти колебания с помощью микрофона преобразуются в электромагнитные колебания той же частоты (рис. 77.2 6). Частота Yзв  этих колебаний значи­тельно меньше частоты Y высокочастотных электромагнитных колебаний.

Колебания, создаваемые генератором и микрофоном, подаются в модулятор, в котором происходит их сло­жение, в результате чего возникают электромагнитные колебания с час­тотой Y, амплитуда которых изменя­ется с частотой Yзв. Такие колебания называют                амплитудно­ - модулированными (рис. 77.2 в). За­тем модулированные  колебания уси­ливаются и подаются на антенну(открытый колебательный контур), которая излучает модулированные электромагнитные волны.

Радиоприёмник. Блок-схема ра­диоприёмника показана на рис. 77.3. Модулированные электромагнитные волны, излучаемые различными ра­диостанциями, индуцируют в антен­не модулированные электромагнит­ные колебания разных частот. Изменяя величину ёмкости конденсатора и индуктивности, добиваются совпа­дения собственной частоты колебательного контура с частотой одной из передающей станции. Это приводит к тому, что в колебательном контуре возникают вынужденные резонансные электромагнитные колебания дан­ной частоты. Амплитуды же колебаний с другими частотами будут очень малы. Эти модулированные колебания рис. 77.2 в) усиливаются и пода­ются в демодулятор (детектор). После его прохождения сила тока в цепи изменяется со временем по закону, график которого приведён на рис. 77.4. далее происходит преобразование этого тока в ток, сила которого изменя­ется со временем со звуковой часто­той Yзв рис.77.2б). Затем этот ток усиливается и протекает через дина­мик, который преобразует электро­магнитные колебания в звуковые той же частоты. В результате этого ди­намик воспроизводит механические колебания, происходящие перед микрофоном передающей станции.

Принцип радиопередачи  используют в  телевидении, радиолокации, в различных видах телефонной (сотовой) связи.


Билет № 21

С точки зрения волновой теории свет представляет собой электромаг­нитные волны с частотой v, лежащей в интервале от  до Гц. Диапазон световых волн чаще выражают в длинах волн в ва­кууме (практически в воздухе). Используя соотношение длины световой    волны с частотой колебания, находим, что длины волн света в вакууме заключены в пределах от 0,75 до 0,4 мкм. Установлено, что цветовое воздействие света на глаз человека обусловлено его частотой. Так, световые волны с частотой  Гц воспринимаются как красный свет, а с частотой Гц как фиолетовый. Показано также, что световые волям, отличающиеся подлине волны менее чем на 2 нм, воспринимаются как одноцветные.


1.     Интерференция волн. Интерференцией волн называют явление усиления и ослабления волн в определённых точках пространства при их наложении. Интерфе­рировать могут только когерентные волны. Когерентными называются такие волны (источники), частоты которых одинаковы и разность фаз колебаний не зависит от времени. Геометрическое место точек,  в кото­рых происходит усиление или ослабление волн соответственно называют интерференционным максимумом или интерференционным миниму­мом, а их совокупность носит название интерференционной картины. В связи с этим можно дать иную формулировку явления. Интерференцией волн называется явление наложения когерентных волн с образованием интерференционной картины.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать