Физика (лучшее)

2.Направление индукционного тока определяет­ся правилом Ленца: индукционный ток всегда име­ет такое направление. что создаваемое им магнит­ное поле препятствует изменению магнитного по­тока, которое вызывает этот ток. Из этого правила следует, что при возрастании магнитного потока возникающий индукционный ток имеет такое направ­ление, чтобы порождаемое им магнитное поле было направлено против внешнего поля, противодействуя увеличению магнитного потока. Уменьшение маг­нитного потока, наоборот, приводит к появлению индукционного тока, создающего магнитное поле, совпадающее по направлению с внешним полем. Пусть, например, в однородном магнитном поле на­ходится проволочная квадратная рамка, пронизы­ваемая магнитным полем Предположим, что магнитное поле возрастает. Это приводит к увеличению магнитного потока через площадь рамки. Согласно правилу Ленца, магнитное поле, возникающего индукционного тока, будет на­правлено против внешнего поля, т.е. вектор В2 этого поля противоположен вектору Ё. Применяя правило правого винта (см. § 65, п. З), находим направление индукционного тока Ii.

З. Явление электромагнитной индукции полу­чило широкое применение в технике: промышленности получение электроэнергии на электростанциях,  разогрев и плавление проводящих материалов (металлов) в индукционных электропечах и т.д.

2.Магнитный поток. Магнитным потоком через некоторую поверхность называют число линий магнитной индукции, пронизывающих её. Пусть в однородном маг­нитном поле находится плоская площадка площадью S, перпендикулярная к линиям магнитной индукции. (Однородным магнитным полем называет­ся такое поле, в каждой точке которого индукция магнитного поля одина­кова по модулю и направлению). В этом случае нормаль n к площадке совпадает с направлением поля. Поскольку через единицу пло­щади площадки проходит число линий магнитной индукции, равное моду­лю В индукции поля, то число линий, пронизывающих данную площадку будет в S раз больше. Поэтому магнитный поток равен


Рассмотрим теперь случай, когда в однородном магнитном поле находится плоская площадка, имеющая форму прямоугольного параллелепипеда со сторонами а и b, площадь которой S = аb. Нормаль n к площадке состав­ляет угол a с направлением поля, т.е. с вектором индукции В. Число линий индукции, проходящих через площадку S и её проекцию Sпр на плоскость, перпендикулярную к этим линиям, одинаково. Следователь­но, поток Ф индукции магнитного поля через них одинаков. Используя выражение, находим Ф = ВSпр Из рис.  видно, что Sпр= ab*cos a =Scosa. Поэтому

ф =BScos a.


В системе единиц СИ магнитный поток измеряется в веберах (Вб). Из формулы следует т.е. 1 Вб — это магнитный поток через площадку в 1 м2, расположенную перпендикулярно к линиям магнитно                      индукции в однородном магнитном поле с индукцией 1 Тл. Найдем размерность вебера:


 Билет № 19

Свободные и вынужденные колебания. Электрические колебания были открыты в известной мере случайно. После того как изобрели лейденскую банку (первый конденсатор) и научились сообщать ей большой заряд от электростатической машины, начали наблюдать электрический разряд банки. Замыкая обкладки лейденской банки с помощью проволочной катушки, обнаружили, что стальные спицы внутри катушки намагничиваются. В это ничего странного не было: электрический ток  и должен намагничивать стальной сердечник катушки. Удивительным было то, что нельзя было предсказать, какой конец сердечника катушки окажется северным полюсом, а какой – южным. Повторяя опыт примерно в одних и тех же условиях, получали в одних случаях один резуль­тат, а в других другой. Далеко не сразу поняли, что при разряде конденсатора че­рез катушку возникают колебания. За время разрядки конденсатор успевает много раз перезарядиться и ток меняет направление много раз. Из-за этого сер­дечник может намагничиваться различ­ным образом.

Периодические или почти периодиче­ские изменения заряда, силы тока и на­пряжёния называют электрическими коле­баниями.

Получить электрические колебания почти столь же просто, как и заставить тело колебаться, подвесив его на пружине. Но наблюдать электри­ческие колебания уже не так просто. Ведь мы непосредственно не видим ни перезарядки конденсатора, ни тока в катушке. К тому же колебания обычно происходят с очень большой частотой.

Наблюдают и исследуют электрические колебания с помощью электронного осциллографа. На горизонтально отклоняющие пластины электроннолучевой трубки осциллографа подается пере­менное напряжение развертки Up “пилообразной» формы. Сравнительно медленно напряжение нарастает, а потом очень резко уменьшается. Электрическое поле между пластинами за­ставляет электронный луч пробегать экран в горизонтальном на­правлении с постоянной скоростью и затем почти мгновенно воз­вращаться назад. После этого весь процесс повторяется. Если теперь присоединить вертикально отклоняющие пластины к кон­денсатору, то колебания напряжения при его разрядке вызовут колебания луча в вертикальном направлении. В результате на экране образуется временная «развертка» колебаний, вполне подобная той, которую вычерчивает маятник с песочни­цей на движущемся листе бумаги. Коле­бания затухают с течением времени

Эти колебания — свободные. Они воз­никают после того, как конденсатору со­общается заряд, выводящий систему из состояния равновесия. Зарядка конден­сатора эквивалентна отклонению маят­ника от положения равновесия.

В электрической цепи можно также получить и вынужден­ные электрические колебания. Такие колебания появляются при наличии в цепи периодической электродвижущей силы. Перемен­ная ЭДС индукции возникает в проволочной рамке из нескольких витков при вращении ее в магнитном поле (рис. 19). При этом магнитный поток, пронизывающий рамку, периодически изменя­ется, В соответствии с законом электромагнитной индукции периодически меняется и возникающая ЭДС индукции. При замыкании цепи через гальванометр пойдет переменный ток и стрелка начнет колебаться около положения равновесия.

     

2.Колебательный контур Простейшая система, в которой могут происходить свободные электрические колебания, состоит из конденсатора и катушки, присоединенной к обкладкам конденсатора (рис. 20). Такая систе­ма называется колебательным контуром.

Рассмотрим, почему в контуре возникают колебания. Зарядим конденсатор, присоединив его на некоторое время к батарее с помощью переключателя. При этом конденсатор получит энергию



где qm — заряд конденсатора, а С — его электроемкость. Между обкладками конденсатора возникнет разность потенциалов Um.

Переведем переключатель в положение 2. Конден­сатор начнет разряжаться, и в цепи появится электрический ток. Сила тока не сразу достигает максимального значения, а увеличивается постепенно. Это обусловлено явлением самоин­дукции. При появлении тока возникает переменное магнитное поле. Это переменное магнитное поле порождает вихревое электрическое поле в проводнике. Вихревое электрическое поле при нарастании магнитного поля направлено против тока и препятствует его мгновенному увели­чению.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля тока, которая определяется форму­лой

где i сила тока,. L — индуктивность ка­тушки. В момент, когда конденсатор пол­ностью разрядится (q=0), энергия элек­трического поля станет равной нулю. Энер­гия же тока (энергия магнитного поля) согласно закону сохранения энергии будет максимальной. Следовательно, в этот мо­мент сила тока также достигнет макси­мального значения

Несмотря на то что к этому моменту разность потенциалов на концах катушки становится равной нулю, электрический ток не может прекратиться сразу. Этому препятствует явление самоиндукции. Как только сила тока и созданное им магнит­ное поле начнут уменьшаться, возникает вихревое электрическое поле, которое на­правлено по току и поддерживает его.

В результате конденсатор перезаряжается до тех пор, пока ток, постепенно уменьшаясь, не станет равным нулю. Энергия магнитного поля в этот момент также будет равна нулю, а энергия электрического поля конденсатора опять станет максимальной.

После этого конденсатор вновь будет перезаряжаться и систе­ма возвратится в исходное состояние. Если бы не было потерь энергии, то этот процесс продолжался бы сколь угодно долго. Колебания были бы незатухающими. Через промежутки времени, равные периоду колебаний, состояние системы повторялось бы.

Но в действительности потери энергии неизбежны. Так, в частности, катушка и соединительные провода обладают сопро­тивлением R, и это ведет к постепенному превращению энергии электромагнитного поля во внутреннюю энергию проводника.

При колебаниях, происходящих в контуре, наблюдается превращение энергии магнитного поля в энергию электрического поля и наоборот. Поэтому эти колебания называют электромагнитными. Период колебательного контура находится по формуле :

 

Билет № 18

1. Индуктивность. Пусть по замкнутому контуру течёт постоянный ток силой I. Этот ток создаёт вокруг себя магнитное поле, которое прони­зывает площадь, охватываемую проводником, создавая магнитный поток. Известно, что магнитный поток Ф пропорционален модулю индукции магнитного поля В, а модуль индукции магнитного поля, возникающего вокруг проводника с током, пропорционален силе тока 1. Из этого следует

Коэффициент пропорциональности L между силой тока и магнитным по­током, создаваемым этим током через площадь, ограниченную проводни­ком, называют индуктивностью проводника.

Индуктивность проводника зависит от его геометрических размеров и формы, а также от магнитных свойств среды, в которой он находится. внутри него. Необходимо отметить, что если магнитная проницаемость среды, окружающей проводник, не зависит от индукции магнитного поля, создаваемого током, текущим по проводнику, то индуктивность данного проводника является постоянной величиной при любой силе тока, идуще­го в нём. Это имеет место, когда проводник находится в среде с диамаг­нитными или парамагнитными свойствами. В случае ферромагнетиков ин­дуктивность зависит от силы тока, проходящего по проводнику.

В системе единиц СИ индуктивность измеряется в генри (Гн). L = Ф/I и 1 Гн = 1 В6/ 1А, т.е. 1 Гн — индуктивность такого про­водника, при протекании по которому тока силой 1А возникает магнит­ный поток, пронизываю площадь, охватываемую проводником, рав­ный 1Вб.

       Явление самоиндукции. Явление возникновения э.д.с. в том же проводнике, по которому течёт переменный ток, называется самоин­дукцией, а саму э.д.с. называют э.д.с. самоиндукции. Это явление объяс­няется следующим. Переменный ток, проходящий по проводнику, порож­дает вокруг себя переменное магнитное поле, которое, в свою очередь, создаёт магнитный поток, изменяющийся со временем, через площадь, ог­раниченную проводником. Согласно явлению электромагнитной индукции, это изменение магнитного потока и приводит к появлению э.д.с. са­моиндукции.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать