Физика (лучшее)

       Пусть волны создаются когерентными источниками O1 и О2. Рассмотрим точку М, на­ходящуюся на расстоянии l1 и l2 от источника (рис. 83.1), в которой происходит наложение

волн. Установлено, что волны усиливают друг друга, если  и ослабляют друг друга, когда  где l — длина волны,     Величина Dl = l1 - l2, т.е. разность расстояний от источников до рассматриваемой точки, называется геомет­рической разностью хода волн. С учётом этого следует, что когерентные волны, раслространяющиеся в одной среде, уси­ливаются в точках, для которых геометрическая разность хода равна це­лому числу длин волн, и ослабляется, когда она составляет полуцелое чис­ло длин волн.

Явление интерференции света используется для контроля качества об­работки поверхностей, просветления оптики, измерения показателей пре­ломления вещества и т.д.

Дифракция света. В однородной среде свет распространяется прямолинейно. Об этом свиде­тельствуют резкие тени, отбрасываемые непрозрачными предметами при освещении их точечными источниками света. Однако если размеры пре­пятствий становятся сравнимыми с длиной волны, то прямолинейность распространения волн нарушается. Явление огибания волнами препятст­вий называется дифракцией. Вследствие дифракции свет проникает в об­ласть геометрической тени. Дифракционные явления в белом свете сопро­вождаются появлением радужной окраски вследствие разложения света на составные цвета. Например, окраска перламутра и жемчуга объясняется дифракцией белого света на мельчайших его вкраплениях.

Широкое распространение в научном эксперименте и технике получи­ли дифракционные решётки, представляющие собой систему узких парал­лельных щелей одинаковой ширины, расположенных на одинаковом рас­стоянии d друг от друга. Это расстояние называют постоянной решётки. Дифракционные решётки изготавливаются с помощью специальной ма­шины, наносящей штрихи (царапины) на стекле или другом прозрачном материале. Там, где проведена царапина, материал становится непрозрачным, а промежутки между ними остаются прозрачными и играют роль ще­лей. Это так называемые прозрачные решётки. Существуют и отража­тельные решётки, которые получают нанесением штрихов на металличе­ское зеркало. Действие обеих типов решёток практически не отличается, поэтому рассмотрим явления, происходящие только в прозрачных решёт­ках. Пусть на дифракционную решётку ДР, перпендикулярно к ней, падает параллельный пучок монохроматического света (плоская монохроматиче­ская световая волна). Для наблюдения дифракции за ней помещают соби­раюпхую линзу Л, в фокальной плоскости которой располагают экран Э(рис. 84.1, на котором приведён вид в плоскости, проведённой поперёк щелям перпендикулярно к дифракционной решётке, а также показаны только лучи у краёв щелей). Вследствие дифракции из щелей исходят све­товые волны во всех направлениях. Выберем одно из них, составляющее угол j с направлением падающего света. Этот угол называют углом ди­фракции. Свет, идущий из щелей дифракционной решётки под углом р, собирается линзой в точке Р (точнее в полосе, проходящей через эту точ­ку). Геометрическая разность хода Dl между соответствующими лучами, выходящими из соседних щелей, как видно из рис. 84.1, равна А! = d~siп9. Прохождение света через линзу не вносит дополнительной разности хода. Поэтому если А! равна целому числу длин волн, т.е.

то в точке Р волны усиливают друг друга. Это соотношение является условием так называемых главных максимумов. Целое число m называют порядком главных максимумов.

Если на решётку падает белый свет, то для всех значений длин волн положение максимумов нулевого порядка (m = О) совпадут; положение же максимумов более высоких порядков различны: чем больше l,????// тем больше j  при данном значении m. Поэтому центральный максимум имеет вид уз­кой белой полосы, а главные максимумы других порядков представляют разноцветные полосы конечной ширины — дифракционный спектр. Наи­более интенсивными являются спектры первого порядка (m = 1). Спектры более высоких порядков менее ярки. Ес­ли решётку освещать немонохроматиче­ским лучом, в составе которого имеется дискретный набор длин волн (такой свет даёт, например, ртутная лам­па), то дифракционный спектр представ­ляет собой совокупность отдельных цветных линий на тёмном фоне: каждой длине волны соответствует своя линия. Таким образом, дифракционная решётка разлагает сложный свет в спектр и по­этому с успехом используется в спектрометрах. Спектрометр — прибор для точного измерения длин волн с помощью дифракционной решётки (или призмы), которая разлагает свет в спектр, т.е. на компоненты с различными длинами волн. Свет от источника(рис. 84.2) через узкую щель направляется в коллиматор, который создаёт параллельный лучок света. далее свет попадает на решётку. Наблюдатель поворачивает трубу и при угле j, соответствующему дифракционному максимуму увидит яркую линию. Угол может быть измерен с высокой точностью. По формуле (84.1) определяют длину волны наблюдаемого света. Значение спектрометров в науке и промышленности огромно, по­скольку с их помощью осуществляется анализ элементов, входящих в со­став сплавов металлов, анализ газов, жидкостей, твёрдых тел, анализ хи­мического состава звёзд и т.д. Отметим, что элемент гелий впервые был обнаружен спектрально на Солнце, откуда и пошло его название.



Дисперсия света. Явление зависимости показателя преломления вещества от частоты света называется дисперсией света. Установлено, что с возрастанием частоты света показатель преломления вещества увеличивается. Пусть на трёхгранную призму па­дает узкий параллельный пучок белого света на котором показано сечение призмы плоскость­ю чертежа и одни из лучей). При прохождении через призму он разлагается на пучки света разного цвета от фиолетового до красного. Цвет­ную полосу на экране называют сплошным спек­тром. Нагретые тела излучают световые волны со всевозможными частотами, лежащими в интерва­ле частот от  до  Гц. При разложении этого света и наблю­дается сплошной спектр. Возникновение сплошного спектра объясняется дисперсией света. Наибольшее значение показатель преломления имеет для фиолетового света, наименьшее — для красного. Это приводит к тому, что сильнее всего будет преломляться фиолетовый свет и слабее всего —красный. Разложение сложного света при прохождении че­рез призму используется в спектрометрах.


1.Поляризация света. Электромагнитная природа света. Свет представляет собой элек­тромагнитные волны, в которых происходит периодическое изменение(колебание) напряжённости Е электрического и индукции В магнитного полей. Направления колебаний векторов Е и В взаимно перпендикулярны

и перпендикулярны к направлению распространения волны. Поэтому световая волна являет­ся поперечной. Плоскость, в которой колеблется вектор электрической напряжённости, называют плоскостью поляризации.

Явление поляризации света. Явления интерференции и дифрак­ции, выявлял волновые свойства све­та, не отвечают на вопрос, являются ли волны продольными или попереч­ными. Действительно, указанные явления наблюдаются для общих видов волн любой природы. Доказательством поперечности световых волн, а, следовательно, и любых электромагнитных волн, является поляризация света. Выясним, в чём заключается это явление? Опытным путём установ­лено, что физиологическое, фотохимическое, фотоэлектрическое и другие действия света обусловлены электрическим полем световой волны. По­этому в дальнейшем будет говориться лишь о напряжённости электриче­ского поля, а об индукции магнитного поля упоминаться не будет.

Световая волна, излучаемая светящимся телом, представляет собой на­ложение огромного числа волн, испускаемых отдельными атомами. Атомы излучают свет независимо друг от друга. Поэтому плоскости поляризация в таких волнах имеют произвольную ориентацию в пространстве. Это приводит к тому, что в такой световой волне колебания вектора Е происходят во всевозможных плоскостях, пересекающихся на оси распростpa­нения волны (рис.86.1, на котором показаны колебания вектора Е в плос­кости, перпендикулярной к направлению распространения волны). Свето­вая волна, в которой колебания вектора Ё совершаются во всех плоско­стях, называется естественной или неполяризованной. Такой свет излучают солнце, электрические лампы, свечи и т.д. Свет, в котором колебания напряжённости электрического, а следовательно, и индукция магнитного полей упорядочены, называют поляризованным. Если колебания вектора Ё происходят в одной плоскости (в одном направлении), то такой свет называется плоскополяризованным (рис. 86.2). По сути дела на рис. 76.1 также изображена плоскополяризованная волна.


Билет № 22

1. После открытия электрона Томсон предложил модель строения атома. Согласно этой модели, атом представляет собой шар, заряженный положительно, внутри которого находятся электроны. Резерфорд, усомнившись в этой модели, провёл опыты по изучению рассеяния a-частиц. Его опыт состоял в следующем. Радиоактивное вещество радий помещалось в контейнер, изготовленный из свинца, в котором просверливался узкий канал. Из этого канала узкий пучок a-частиц (ядер гелия) падал на тонкую металлическую фольгу, за которой находился экран, покрытый люминесцентным составом. Всё это помещалось в сосуд, из которого откачивался воздух. Проходя фольгу, a-частицы попадали на экран, на котором наблюдались световые вспышки в месте попадания частицы. Было обнаружено, что подавляющее большинство частиц пролетает фольгу, не меняя своего направления. Однако некоторые из них отклонялись на большие углы. Та­кое рассеяние a-частиц нельзя объяснить, исходя из модели атома Томсо­на. Поэтому Резерфорд предложил другую модель строения атома, назван­ную ядерной. Согласно этой модели, атом состоит из ядра, в котором со­средоточена почти вся масса атома и обладающего положительным заря­дом, вокруг которого вращаются электроны, имеющие отрицательный за­ряд. При этом размеры ядра много меньше размеров атома и заряд ядра равен суммарному заряду электронов по абсолютной величине.

Однако эта модель обладает двумя недостатками.

1.    Согласно классической электродинамике, ускоренно движущиеся заряженные частицы излучают электромагнитные волны. В атоме элек­троны, двигаясь вокруг ядра, обладают центростремительным ускорением. Поэтому они должны бы излучать энергию в виде электромагнитных волн. В результате этого электроны будут двигаться по спиральным траектори­ям, приближаясь к ядру, и, наконец, упасть на него. После этого атом пре­кращает своё существование. В действительности же атомы являются устойчивыми образованиями.

2.   Известно, что заряженные частицы, двигаясь по окружности, излучают электромагнитные волны с частотой, равной частоте вращения час­тицы. Электроны в атоме, двигаясь по спиральной траектории, меняют частоту вращения. Поэтому частота излучаемых электромагнитных волн плавно изменяется, и атом должен бы излучать электромагнитные волны в некотором частотном интервале, т.е. спектр атома будет сплошным. В действительности же он линейчатый. Для устранения указанных недостат­ков Бор пришёл к выводу, что необходимо отказаться от классических представлений. Он постулировал ряда принципов, которые получили  на­звание постулатов Бора.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать