Исследование методов наблюдения доменов в тонких ферромагнитных пленках

Оказывается, что и точка Кюри ферромагнетика для всех направлений в кристалле совершенно одинакова. Ферромагнитные свойства теряются в ферромагнетике по всем направлениям при одной и той же температуре. Изотропность точки Кюри объясняется изотропностью спонтанной намагниченности.

Если снимать кривые намагничивания по различным направлениям в ферромагнитных кристаллах (например, для железа), то скажется следующее. Намагниченность монокристалла железа в направлении ребра –куба резко возрастает уже в слабых полях и быстро достигает насыщения (рисунок 21).












вдоль ребра куба (направление [100])

вдоль диагонали грани (направление [110])

вдоль пространственной диагонали (направление [111]).

Рисунок 21 - Кривые намагничивания монокристалла железа по различным кристаллографическим направлениям


При намагничивании вдоль диагонали грани кривая намагничивания сначала резко идет вверх, как и при намагничивании в направлении ребра куба, затем при достижении приблизительно 0,7 от величины насыщения рост намагниченности замедляется и на кривой намагничивания появляется излом. При дальнейшем возрастании поля намагниченность увеличивается. Насыщение намагниченности наблюдается в довольно сильных полях, причем ее величина равна насыщению, полученному при намагничивании вдоль ребра куба (см. рисунок 21, кривая 2). На том же рисунке видно, что при намагничивании вдоль пространственной диагонали быстрый рост намагниченности прекращается, когда она достигает примерно 0,58 от насыщения. Кривая намагничивания в этом месте претерпевает излом, затем следует медленное возрастание намагниченности с ростом поля, пока не будет достигнуто насыщение (кривая 3, рисунок 21).

Таким образом, намагничивание монокристалла железа по различным направлениям происходит по-разному, т.е. в ферромагнитных кристаллах существует магнитная анизотропия.

Магнитную анизотропию удобнее всего характеризовать работой намагничивания. В самом деле, при намагничивании ферромагнетика расходуется некоторое количество энергии, численно определяемое площадью, ограниченной осью намагниченности, кривой намагничивания и продолжением прямой, соответствующей насыщению, до пересечения с осью намагниченности (рисунок 22).









Рисунок 22. Заштрихованная площадь численно равна работе намагничивания.


Из рисунка 21 следует, что работа намагничивания вдоль направления ребра куба для железа наименьшая, вдоль пространственной диагонали – наибольшая, а при намагничивании вдоль диагонали грани она имеет некоторое среднее значение.

Поэтому направление вдоль ребра куба в железе называют направлением легкого намагничивания, а направление, совпадающее с направлением пространственной диагонали, направлением трудного намагничивания.

Исследования, проведенные на монокристаллах никеля, дают прямо противоположную картину. Здесь наибольшая работа при намагничивании затрачивается вдоль ребра куба, которое является направлением трудного намагничивания (рисунок 23, кривая 1). Направлением легкого намагничивания является направление пространственной диагонали  (рисунок 23, кривая 3). На рисунке 2 кривая 2 соответствует намагничиванию монокристалла никеля по диагонали грани.











1-вдоль ребра куба;

2-вдоль диагонали грани;

3-вдоль пространственной диагонали.

Рисунок 23 - Кривые намагничевания монокристалла никеля вдоль различных кристаллографических направлений


Монокристалл кобальта имеет всего одну ось легкого намагничивания, совпадающую с направлением гексагональной оси (рисунок 24). На рисунке 25 изображены кривые намагничивания монокристалла кобальта в направлении гексагональной оси (1) и перпендикулярно к ней (2). Таким образом, в железе имеются три оси (6 направлений по оси и против нее) легкого намагничивания и 4 оси (8 направлений) трудного намагничивания; в никеле – 4 оси (8 направлений) легкого намагничивания, 3 оси (6 направлений) трудного намагничивания; в кобальте – 1 ось (2 направления) легкого намагничивания и бесконечное число направлений трудного намагничивания, перпендикулярных гексагональной оси.



.






Рисунок 24. Направление лёгкого намагничивания в монокристалле кобальта совпадает с гексагональной осью.



Рисунок 25 - Кривые намагничивания монокристалла кобальта: 1– вдоль гексагональной оси; 2 – перпендикулярно гексагональной оси (в базисной плоскости).


Согласно закону сохранения энергии, работа, затраченная на намагничивание ферромагнетика, не может исчезнуть, она превращается в потенциальную энергию намагниченного тела.

Всякое тело, предоставленное самому себе, стремится занять положение, соответствующее минимуму его потенциальной энергии. В соответствии с этим принципом железный стержень в магнитном поле своей осью установится вдоль поля, так как намагничивание вдоль оси стержня требует меньшей энергии, чем намагничивание поперек стержня.

Вырежем шар из монокристалла железа или никеля и поместим его в магнитное поле, предоставив ему возможность любым образом ориентироваться в пространстве. Последнее можно осуществить, например, при помощи подвеса Кардана (рисунок 26).









Рисунок 26 - Шар в подвесе Кардана.


Так как работа намагничивания по различным направлениям в кристалле различна, то шар будет вести себя в магнитном поле, как магнитная стрелка, устанавливаясь вдоль поля одной из своих осей легкого намагничивания. На рисунке 27 изображен шар из монокристалла никеля, на котором точками отмечены выходы осей легкого намагничивания. Таких осей четыре.








Рисунок 27 - Шар из монокристалла никеля. Точками отмечены выходы на поверхность осей лёгкого намагничивания.


Представим себе теперь, что мы ориентировали шар из монокристалла железа в направлении грани куба по отношению к полю. Кристалл намагнитится, и так как намагничивание происходит в направление оси легкого намагничивания, работа намагничивания будет минимальной.

Если теперь поворачивать этот кристалл в магнитном поле, то намагничивание уже не будет совпадать с направлением легкого намагничивания в кристалле, и работа намагничивания будет возрастать. Представим себе, что кристалл ориентирован так, что вектор напряженности магнитного поля лежит в кристаллической решетке в плоскости грани куба. Тогда с изменением угла поворота кристалла относительно поля работа намагничивания будет периодически то возрастать, то уменьшаться.

Пусть работа намагничивания в направлении ребра куба равна U0. Изобразим эту величину в виде отрезка, который численно равен U0. При повороте кристалла на некоторый угол a величина энергии изменится. Пусть она будет равна Ua. Отложим под углом a к отрезку, изображающему U0, отрезок, равный Ua. Если определить значения Ua для различных углов и откладывать под этими углами отрезки, равные значениям энергии, затрачиваемой при намагничивании шара под соответствующим углом, то получим график энергии намагничивания по различным направлениям в плоскости грани куба, или, как говорят, энергетическую диаграмму в этой плоскости (рисунок 28). Как уже отмечалось, различные значения работы намагничивания по различным направлениям в кристалле и характеризуют собой магнитную анизотропию. Численно магнитная анизотропия равна учетверенной разности работ намагничивания в направлении ребра куба и в направлении диагонали грани (рисунок 28).





Рисунок 28 - Энергетическая диаграмма в плоскости грани куба монокристалла железа.


Эта величина, отнесенная к единице объема, представляет собой важную характеристику ферромагнетика и называется константой магнитной анизотропии.








Рисунок 29 - Энергетическая диаграмма монокристалла железа для диагональной плоскости.


На рисунке 29 представлена энергетическая диаграмма в диагональной плоскости кубической решетки. Как видно из рисунка, «горб» соответствует направлению трудного намагничивания, а наиболее глубокие лунки соответствуют направлениям легкого намагничивания.

Изучение энергетической анизотропии кристаллов позволило Н.С. Акулову рассчитать кривые намагничивания монокристаллов по различным направлениям. Рассчитанные кривые оказались в хорошем согласии с опытом.

Для кристаллов кубической системы, энергия, связанная с анизотропией:


U = U0 + K (s12s22 + s22s32 + s12s32 ) (25)


где U0 – энергия в направлении ребра куба кристалла, которое обозначают [100] (рисунок 30);

s1, s2, s3 – косинусы углов между направлениями X, Y, Z и вектором спонтанной намагниченности Js (рисунок 31). При комнатной температуре константа магнитной анизотропии К для железа равна +4,28·105 эрг/см3, а для никеля – 5,12·104 эрг/см3.










Рисунок 30 - Главные кристаллографические направления в кубическом кристалле.











Рисунок 31. S=cos ; S=cos ; S=cos ;


Константа магнитной анизотропии меняется с изменением температуры. На рисунке 32 представлены графики зависимости констант магнитной анизотропии железа и никеля от температуры. Обращает на себя внимание резкая зависимость от температуры константы анизотропии никеля. Даже в области комнатных температур ее величина изменяется в полтора раза.


Рисунок 32 - Температурная зависимость констант магнитной анизотропии 1- для железа; 2- для никеля;


Энергия анизотропии для гексагональных кристаллов типа кобальта выражается формулой:


U = U0 + K1 sin2a + K2 sin4a (26)


где К1 и К2 – первая и вторая константы анизотропии;

a - угол между гексагональной осью и направлением вектора спонтанной намагниченности (рисунок 33).[7, с. 65-74]










Рисунок 33.


1.11 История обнаружения доменов


У обычных ферромагнитных образцов вследствие их конечных размеров энергетически более выгодным оказывается разделение кристалла на ряд антипараллельно намагниченных областей – доменов. Чем на большее количество таких доменов разобьется образец, тем меньше будет его магнитная энергия. Таким образом, в целом ферромагнетик оказывается разделенным на множество доменов, намагниченных до насыщения так, что результирующая намагниченность образца в отсутствие внешнего поля равна нулю.

Впервые предположение о существовании магнитных доменов для объяснения быстрого намагничивания ферромагнетиков в сравнительно слабых магнитных полях высказал в 1892 году русский учетный Б.Л. Розинг, а затем в 1907 году – французский ученый П. Вейсс [2, с. 99]. В 1907 году Вейсс ввел понятие спонтанной намагниченности и дал теоретическое объяснение того факта, что, несмотря на наличие у ферромагнетиков спонтанной намагниченности, сильно намагнитить их удается не всегда. Он предположил, что ферромагнетик развит на множество магнитных доменов, причем направление спонтанной намагниченности меняется от домена к домену [9, с.154].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать