Исследование методов наблюдения доменов в тонких ферромагнитных пленках

Реальность существования областей спонтанной намагниченности доменов была подтверждена двумя фактами. Первый заключается в скачкообразном изменении намагниченности ферромагнетика при плавном увеличении внешнего магнитного поля. Было установлено, что изменение магнитного момента при одном скачке связано с перемагничением внешним полем некоторого числа доменов с одинаковым направлением намагниченности, т.е. определенного объема ферромагнетика. Обычно на кривой намагничения эти скачки незаметны, что объясняется малой величиной скачка и большим их количеством. Скачки становятся заметными при увеличении обычного масштаба кривой намагничения приблизительно в 109 раз. Этот эффект впервые был обнаружен в 1919 году Баркгаузеном и назван его именем.

Вторым фактором, доказавшим реальность доменов, было получение на отполированной поверхности ферромагнетика характерных узоров – фигур Акулова-Биттера [2, с. 99]. Попытки увидеть магнитные домены непосредственно в микроскоп были впервые предприняты в 1932 году Биттером и независимо от него Хамосом и Тиссеном.

В этих экспериментах исследователи наносили на ферромагнитный кристалл суспензию, содержавшую мелкие ферромагнитные взвешенные частицы, а затем старались рассмотреть в металлографический микроскоп образуемое ими изображение магнитных доменов. В результате была получена великолепная картина магнитных доменов, хотя Биттер и не решился делать выводы об их форме, а в заглавии статьи говорилось просто о неоднородностях в ферромагнетиках. Возможно, так произошло потому, что, принимая общепризнанное в то время мнение о размерах доменов, сформировавшееся после обнаружения эффекта Баркгаузена, Биттер был убежден, что магнитные домены не могут быть столь большими, какими они были на фотографиях. Вскоре было выполнено множество наблюдений доменов, но в то время не принимали в расчет магнитостатическую энергию и потому не заботились о том, чтобы кристаллы были вырезаны строго параллельно плоскостям, в которых лежит намагниченность, поэтому изображения не были четкими.

Тогда же крупный вклад в развитие метода суспензии и метода электрополировки внес изучавший домены Элмор. Созданная им техника была использована затем в работах группы Уильямса, что и принесло успех этим исследователям. В то же время магнитологов ввела в заблуждение обнаруженная лабиринтная структура (рисунок 34, а). Речь идет об изображениях мельчайших магнитных доменов с размерами 0,01 мм. и ниже.







Рисунок 34 - Магнитные домены, наблюдавшиеся методом порошковых фигур на монокристалле железа в плоскости (001): а – лабиринтная доменная структура поверхностного слоя; б – магнитные домены, появившиеся после удаления электрополировкой деформированного поверхностного слоя глубиной 28 мкм.

Если вычислить объем этих доменов, получится значение, примерно совпадающее с величиной 10-8 см3, найденной из эффекта Баркгаузена. В результате ошибочной интерпретации полученного результата сложилось мнение, что домены малы. Однако Кая в работе 1934 г. доказал, что появление лабиринтной структуры обусловлено поверхностной деформацией, возникающей при шлифовке кристаллической поверхности; выяснилось также, что эти изображения не отражают действительной формы магнитных доменов, и проблема, связанная с размерами магнитных доменов, по-прежнему осталась неразрешенной.

В 1935 г. Ландау и Лифшиц дали чисто теоретическое объяснение доменной структуры и правильно предсказали форму доменов, что позволило навести порядок в хаосе экспериментальных результатов. Затем в 1944 г. Неель выполнил расчеты мелкой доменной структуры, причем впервые учел при этом магнитостатическую энергию. Полученная геометрическая структура доменов весьма заметно расходилась с тогдашними представлениями о ней, но в конце концов в 1949 г. теоретические результаты были полностью подтверждены в замечательных экспериментах с порошковыми фигурами, выполненных Уильямсом, Бозортом и Шокли (лаборатория фирмы «Белл»). На рисунок 34 б, показано изображение доменов, полученное по методу этих авторов после удаления поверхностного деформированного слоя. Как можно убедиться, размеры доменов в данном случае существенно больше, чем в лабиринтной структуре.

Данный метод наблюдения доменов аналогичен способу получения изображения силовых линий магнита, расположенного под листом бумаги, с помощью насыпаемых сверху железных опилок. Он состоит в том, что на отшлифованную поверхность ферромагнетика наносят сверху мельчайшие магнитные частицы и наблюдают в микроскоп доменную структуру. Называется этот способ методом порошковых фигур [9, с.156-157].


1.12 Возникновение доменов


Кристаллы ферромагнетиков состоят из магнитных доменов. Каждый домен – это область, намагниченная до насыщения однородно, т.е. векторы спонтанной намагниченности Js, построеные в различных точках домена, параллельны.

Форма доменов, их размер, взаимное расположение доменов и доменных границ (стенок) – все это входит в понятие «доменная структура» магнетика.

С тех пор, как впервые наблюдались магнитные домены, исследования доменных структур путем непосредственного наблюдения доменов шли с нарастающей интенсивностью. Обнаружилось огромное разнообразие доменных структур в кристаллах различных веществ. Более того, оказалось, что для одного и того же вещества, но в образцах разного размера и формы, доменная структура может быть совершенно различной. Своеобразные домены наблюдаются в поликристаллических и аморфных тонких слоях, лентах и пленках с наведенной магнитной анизотропией.

Домены различаются не только по виду, но и по своим свойствам. Например, есть доменные структуры, исключительно чутко откликающиеся на внешние воздействия, особенно на магнитные поля. И наоборот, есть структуры, изменить которые очень трудно. Таким образом можно говорить о целом мире магнитных доменов.

При последовательном изменении напряженности магнитного поля Н от +Нs – значения поля насыщения одного направления до –Нs – поля противоположного направления домены «рождаются», растут, развиваются, начинают взаимодействовать друг с другом, изменяют свою форму и размеры. Потом те домены, в которых намагниченность Js ориентирована удачно относительно поля (например, JsН) постепенно поглощают соседние домены (с Js¯Н).

Векторы спонтанной намагниченности в кристалле ориентируются не как угодно, а строго вдоль определенных кристаллографических осей. Их называют осями легкого намагничивания(ОЛН) , так как в этих направлениях кристалл намагничивается легче (в меньших полях), чем в любых других. В этом проявляется естественная магнитокристаллическая анизотропия.

Количество осей легкого намагничивания в разных магнетиках различно. Например, железо (Fe) имеет кубическую кристаллическую решетку, и осями легкого намагничивания служат ребра куба. Их обозначают [100], [010] и [001], так что у Fe три естественных оси легкого намагничивания. Никель (Ni) также имеет кубическую решетку, но осями легкого намагничивания являются пространственные диагонали куба, их четыре. Кобальт (Со) имеет гексагональную кристаллическую решетку и единственную ОЛН – гексагональную ось. Кристаллы различных веществ по характеру магнитной анизотропии могут быть подобны Fe или Ni и их называют магнитомногоосными, а те, которые подобны Со, - магнитоодноосными.

Наряду с естественной магнитной анизотропией в кристалле можно искусственно создать так называемую наведенную магнитную анизотропию. Например, в монокристаллическом образце Fe в форме сферы (это изотропная форма) три ОЛН – [100], [010] и [001] – равноправны. Но в образце в форме тонкой пластинки, перпендикулярной оси [001], эта ось уже не является осью легкого намагничивания. Действительно, намагнитить пластинку вдоль этой оси гораздо труднее, чем вдоль осей [100] и [010], лежащих в плоскости пластинки. Так, из-за анизотропии формы образец из магнитотрехосного стал магнитодвухосным. Если теперь пластинку слегка растянуть вдоль [100], т.е. создать одноосные упругие направления, то эта ось станет легчайшей, а образец – магнитоодноосным.

Рассмотрим однородно намагниченный вдоль оси легкого намагничивания кристалл (рисунок 35а). В этом состоянии образец, подобно постоянному магниту, создает поле (Нm), обладающее большой энергией (Еm). Как любая термодинамическая система кристалл стремится перейти в равновесное состояние с минимумом энергии. Есть ли возможность уменьшить энергию Еm? Да, есть. Эту энергию можно уменьшить примерно в два раза, если в образце возникнут два домена (рисунок 35б). Заметьте, если на рисунке 35а образец намагничен до насыщения (J = Js), то в состоянии на рисунке 35б он размагничен (J=0). Отсюда понятно, почему поле Н называют размагничивающим, а энергию Еm – магнитостатистической, или размагничивающей, энергией. Можно и дальше понизить Еm, если увеличить число доменов (рисунок 35в). Однако, начиная с состояния на рисунке 35б, появляется новый объект – доменная граница («стенка»). В стенке происходит поворот Js от направления «вверх», до направления «вниз» (на рисунке 35б), т.е. отклонение Js от ОЛН и соответственно появление энергии магнитной анизотропии. Общая граничная энергия Еg = gS, где g– энергия, приходящаяся на единицу площади стенки, S – суммарная площадь всех стенок. Таким образом, увеличивая число доменов, выигрываем в Еm и проигрываем в Еg. В итоге в равновесном состоянии в кристалле сформируется такая доменная структура (с таким числом доменов), которая обеспечивает минимум его суммарной энергии.[6, с. 7-8]


Рисунок 35 - Схема образования магнитных доменов


Могут возникнуть доменные структуры, в которых магнитный поток целиком замыкается внутри образца [4, с.140-141].

На рисунке 36 структуры имеют нулевую магнитную энергию. Здесь границы «замыкающих доменов», имеют форму трехгранных призм вблизи концевых граней кристалла, образуют углы по 450 с намагниченностью «своих» доменов и с намагниченностью соседних (900-ное соседство). Компоненты намагниченности в направлении, нормальном к границе, не претерпевает разрыва на границе, и никаких магнитных полей, связанных с намагниченностью, не возникает. Магнитный поток замыкается внутри кристалла, отсюда и термин «замыкающие домены» для доменов у поверхности кристалла, становящихся элементом магнитной цепи.


Рисунок 36.


Наблюдаемые доменные структуры часто имеют гораздо более сложный характер, чем в описанных выше простых примерах, но их образование всегда связано с уменьшением энергии системы и переходом от конфигурации насыщения, обладающей большой магнитной энергией, к некоторой доменной конфигурации с меньшей энергией [8, с. 586-587].


1.13 Размеры доменов и границ


Причина разбиения ферромагнетиков на домены – это конкуренция обменных и магнитных сил в них: обменные силы стремятся установить магнитные моменты атомов параллельно, а магнитные силы (размагничивающие) антипараллельно. В результате этого образуется магнитная структура, обладающая минимумом магнитной энергии (замкнутая магнитная конфигурация). На рисунке 35 схематически показан последовательный переход от менее выгодной магнитной конфигурации к более выгодной на рисунке 36.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать