Исследование методов наблюдения доменов в тонких ферромагнитных пленках

Следует указать, что границы между доменами, показанные на рисунке 35б,с и рисунке 36 энергетически невыгодны, так как здесь существует слишком большой скачек обменной энергии при переходе от одного домена к другому. Должен существовать слой между доменами, в котором магнитные моменты атомов M постепенно изменяют свое направление (рисунок 37), причем с выходом из плоскости (так называемая блоховская граница). Это приводит к плавному изменению обменной энергии при переходе границы. С другой стороны, поскольку изменение направлений M в граничном слое происходит в кристалле, все большее число атомов будет обладать магнитными моментами, не ориентированными в направлении легкого намагничивания С (рисунок 37), и тем самым они должны увеличивать энергию магнитной анизотропии. В результате граница приобретает такую ширину б, при которой сумма обменной энергии и энергии магнитной анизотропии будет минимальной [1, с. 61-62].








Рисунок 37.


Доменные стенки можно разделить на два типа: 180-градусные, направление намагниченности в которых меняется при переходе от одной стороны стенки к другой на 1800 (рисунок 37), и 90-градусные, в которых направление намагниченности меняется только на 900 [9, с. 185].

Упрощенный расчет для ширины граничного слоя в случае 1800 – соседства для одноосного кристалла дает:


δ = p (27)


где А – обменный интеграл,

К – константа магнитной анизотропии,

a – постоянная решетки.

Подстановка соответствующих значений показывает, что δ= 10-5 см или, иными словами составляет десятые доли микрона, что совпадает с данными опыта.

Образование граничных слоев, естественно, происходит с затратой некоторого количества энергии, пропорционально площади граничного слоя. Как показывает расчет, плотность граничной энергии, т.е. энергия единицы поверхности граничного слоя, равна:


γ= p (28)


Подстановка численных значений показывает, что плотность граничной энергии лежит в пределах от 0,1 до 10 эрг/см2.

Ширина домена, зависит от величины кристалла. Расчет дает, что ширина домена d равна:


d =  , (29)


где L – длина кристалла.

Таким образом, крупные домены могут быть получены лишь в крупных кристаллах. В очень мелких кристаллах доменной структуры вообще не возникает, они являются однодоменными [7, с. 84-85].

Следует заметить, что в тонких магнитных пленках в направлениях, перпендикулярных плоскости пленки, существует большое размагничивающее поле (анизотропия формы), и поэтому реализуется доменная граница без выхода вектора M из плоскости (Неелевская граница) [1, с. 62].


2. Методы исследования


2.1 Метод порошковых фигур


При приготовлении ферромагнитных образцов, используемых для наблюдения доменов, следует учитывать два момента.

Во-первых, доменная структура может значительно изменяться в зависимости от формы образца и в особенности в зависимости от кристаллографической ориентации рассматриваемой плоскости.

Во-вторых, сильное влияние на доменную структуру оказывает деформация поверхности. Имея в виду первое замечание, для наблюдения четкой доменной структуры желательно использовать по возможности либо поликристалл с максимально большими кристаллическими зернами, либо монокристалл.

В большинстве случаев монокристаллы достаточно большой величины получают путем медленного перевода расплава в твердое состояние. Затем с помощью оптического или рентгеновского метода определяют кристаллографические направления и вырезают образец вдоль главной кристаллографической поверхности.

На рисунке 38 приведено изображение доменной структуры, которое наблюдается на поверхности образца, не совпадающей с главной кристаллографической плоскостью. Интерпретировать этот случай довольно трудно. Имея в виду второе замечание, необходимо достаточно хорошо отшлифовать изучаемую поверхность наждачной бумагой, затем отполировать ее окисью хрома и, наконец, провести электрополировку [9, с.159].

На отполированных образцах можно наблюдать изображения доменов. Для наблюдений можно использовать отражательный металлографический микроскоп с увеличением 70¸150×. Для таких исследований очень хорошо иметь небольшой магнит типа показанного на рисунке 39. С его помощью можно создавать любое необходимое поле. Впрочем, для наблюдений изображений доменов достаточно и простого постоянного магнита, расположенного под предметным столиком.











Рисунок 38. Изображение доменов, наблюдавшееся на кристаллической плоскости, расположенной под углом к главной плоскости (на монокристаллическом образце 4% Si-Fe)











Рисунок 39 - Электромагнит, применяемый при наблюдении доменов.


Электролитически отполированный образец помещают над магнитом, наносят на него сверху с помощью пипетки одну – две капли суспензии и, наложив сверху покровное стекло, изучают образец под микроскопом (рисунок 40). Частицы суспензии притягиваются к границам между доменами, образуя здесь черные линии. На рисунке 41 приведено изображение доменов, наблюдавшихся таким способом на поверхности (001) образца 4 % Si – Fe. Черные линии – границы доменов, а стрелки указывают направление намагниченности в отдельных доменах. Направление намагниченности проще всего определить, используя то, что она перпендикулярна полоскам, которые в большом количестве видны внутри доменов. Полоски могут появляться на неровностях, возникающих на поверхности при электрополировке, или на неоднородностях концентрации сплава в образце, поскольку в этих местах возникают магнитные полюсы, или их еще называют линиями насыщения [9, с. 160-161].


Рисунок 40 - Метод наблюдения порошковых фигур.












Рисунок 41 - Изображение доменов, наблюдавшееся на монокристалле 4% SI-Fe в плоскости (001). Границы доменов обведены тушью (чёрные линии). Горизонтальной линией в середине рисунка показано, как выглядит царапина, сделанная механическим способом.


Возникновение линий насыщения можно объяснить следующим образом. Как бы хорошо ни была отполирована поверхность кристалла, она всегда имеет дефекты типа царапин. Эти царапины на поверхности расположены во всех направлениях, однако выявляются они с помощью магнитного порошка далеко не во всех случаях.

Если направление царапины совпадает с вектором намагниченности, то никаких магнитных полюсов не образуется и магнитный порошок на такой царапине не оседает (рисунок 42б).

Если же царапина направлена перпендикулярно вектору намагниченности, то на этой царапине магнитные полюса, на которых оседает магнитная суспензия (рисунок 42а). Таким образом, магнитный порошок будет выявлять царапины, перпендикулярные направлению намагниченности, и, наоборот, по выявленным царапинам (линиям насыщения) можно судить о направлении линии, вдоль которой лежит вектор намагниченности в домене.


Рисунок 42. Магнитные силовые линии в окрестности царапины в случае, когда царапина перпендикулярна (а) и параллельна (б) направлению намагниченности.


При наложении на образец магнитного поля или упругих напряжений его доменная структура изменяется. Домены, намагниченность которых направлена противоположно направлению поля или составляет с ним тупой угол, начинают уменьшаться. Этот процесс идет обычно путем смещения границ, и кристалл в целом приобретает все возрастающую намагниченность.

Такое смещение границ под действием поля возможно, очевидно, до тех пор, пока наиболее выгодно ориентированные в отношении поля домены не поглотят полностью домены, ориентированные менее выгодно. После завершения процесса смещения кристалл оказывается намагниченным однородно до насыщения в направлении ближайшей к полю оси легкого намагничивания.

Такой процесс смещения границ при нарастании намагничивающего поля можно проследить с помощью киносъемки порошковых фигур. На рисунке 43 представлены кадры из кинофильма, показывающие изменения порошковых фигур в непрерывно возрастающем магнитном поле, направленном вдоль одной из осей легкого намагничивания. Следует отметить, что с помощью метода порошковых фигур нельзя проследить за быстрыми изменениями доменной структуры, которые происходят, например, при положении переменного поля обычной частоты в 50 гц. Это связано с инерционностью магнитного порошка, неуспевающего следовать за быстрыми перемещениями междоменных границ.















Рисунок 43.


Метод порошковых фигур обладает еще и тем недостатком, что его использование для исследования доменной структуры ограничено небольшим интервалом температур, близким к комнатной. Для изучения доменной структуры в области высоких температур жидкая суспензия, очевидно, неприменима.

В настоящее время разработаны новые методы изучения доменной структуры, некоторые из них свободны от недостатков, свойственных методу порошковых фигур [7, с. 81-82].


2.2 Магнитооптический метод


Свет, как известно, имеет волновую природу, причем световые волны есть волны поперечные, т.е. колебания в световой волне направлены перпендикулярно линии распространения светового луча. В обычном естественном свете эти поперечные колебания совершаются перпендикулярно направлению луча в самых разнообразных плоскостях.

Если на пути светового луча поставить особый прибор называемый поляризатором, то он выделит световые волны, колебания которых происходят в строго определенной плоскости. Такая световая волна называется поляризованной.

Если на пути поляризованного света поставить еще один поляризующий прибор (анализатор), то свет через него пройдет полностью только в случае, если поляризатор и анализатор расположены одинаково. Если же расположение их неодинаково, то свет через них пройдет лишь частично. При «скрещенных» поляризатора и анализатора, когда они расположено под углом 900 относительно друг друга, свет через них вообще не проходит [7, с. 82-83].

Магнитооптический метод наблюдения доменов с помощью магнитооптических эффектов Керра или Фарадея не требует использования промежуточной среды типа суспензии, поэтому он удобен для исследования доменов при различных температурах.

Магнитооптический эффект Керра заключается в том, что при отражении падающего на намагниченный магнетик поляризованного света происходит поворот плоскости поляризации. Рисунок 44 поясняет принцип действия установки для наблюдения доменов с помощью магнитооптического эффекта Керра. На рисунке 44а изображена схема установки. Свет от источника, проходя поляризатор, поляризуется и, отразившись от полупрозрачного зеркала, падет на образец перпендикулярно его поверхности. Отраженный от поверхности образца поляризованный свет, пройдя полупрозрачное зеркало, попадает на анализатор, который пропускает только компоненту, параллельную оси анализатора. Затем поляризованный свет попадет в окуляр, через который производится визуальное наблюдение. Если ферромагнитный образец разбит, как показано на рисунке 44б, на домены, в которых направление спонтанной намагниченности перпендикулярно поверхности образца, то благодаря магнитооптическому эффекту Керра в доменах с антипараллельной намагниченностью поворот плоскости поляризации произойдет в противоположных направлениях. Следовательно, изображение домена в отраженном свете будет светлым, если направление поляризации отраженного от него света совпадает с направлением оси пропускания анализатора, и темным в обратном случае.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать