привода шпинделя типа 4АМI32М8/4У3 мощностью 5 кВт, n=1500 об/мин, U=380 В;
привода быстрых перемещений каретки и суппорта типа ДПТП224СIУ3 мощностью 0,37 кВт, n=1500 об/мин, U=380 В;
привода насоса охлаждающей жидкости типа X1422МУХЛ4 мощностью 0,12 кВт, n=3000 об/мин,U=380 В;
привода насоса смазки,в комплекте со станцией смазки С4814 мощностью 0,12 кВт, n=3000 об/мин,U=380 В;
Электродвигатели установленные на станке имеют низкий коэффициент полезного действия, и создают много шума в работе.
Коробка скоростей главного привода станка имеет две электромагнитные муфты, посредствам которых осуществляется пуск и торможение шпинделя станка.
Органы управления станком сосредоточены в шкафу управления.
На станке размешается пульт управления . На нем находятся следующие кнопки:
рукоятка включения электрооборудования станка в сеть;
рукоятка включения насоса охлаждения;
рукоятка переключения скорости главного электродвигателя;
кнопка включения ускоренных ходов каретки и суппорта;
рукоятка пуска станка и реверсирования шпинделя;
кнопка аварийная;
кнопка пуска главного электродвигателя;
Также на пульте управления находится сигнальная лампа HL2, сигнализирующая наличие питания сети и HL1,сигнализирующая наличие питания трансформатора.
Установленные автоматические выключатели устарели и не отвечают требованиям безопасности . Они нуждаются в замене на более современные с лучшими характеристиками.
Необходимая скорость вращения двигателя М1 главного привода задается установкой переключателя S1 в положение 1 –первая, малая скорость, или в положение 2 –вторая скорость.
Установкой рукоятки вводного выключателя F1 в положение 1 электрооборудование станка подключается к питающей сети и включается сигнальная лампа НL1.
При воздействии на кнопку управления S7 включается реле К2, К3,КТ и магнитные пускатели К1, К7 . Магнитный пускатель К7 включает электродвигатель М1 главного привода, а магнитный пускатель К1 –электродвигатель М4 станции смазки.
После запуска электродвигателя М1 могут быть включены: переключателем S11 –магнитный пускатель К10 электронасоса охлаждения М3, а рукояткой управления, левой или правой –шпиндель станка. Перемещение каретки может происходить независимо от запуска электродвигателя М1; кнопкой управления S10 включается магнитный пускатель К9 электродвигателя М2 быстрых перемещений каретки и суппорта.
Работа одновременно двумя рукоятками управления, например, включение шпинделя правой рукояткой, а отключение левой –невозможно.
Если одной из рукояток шпиндель включен –вторая рукоятка никакого действия на работу привода не оказывает, так как, если работает правой рукояткой, реле К2 оказывается отключенным, а при работе левой рукоятки отключается реле К3 . Но, если обе рукоятки находятся в нейтральном положении и реле К2 и К3 включены, то начинать работу можно любой рукояткой управления.
Для останова шпинделя рукоятку управления следует перевести из положения 3 в положение 2 “Шпиндель стоп”.При этом контакты переключателя s9 в цепях 3 и 5 замыкаются и включается реле КЗ, а контакт в цепи 9 размыкается и отключает реле К4 и через него К6 . Контакт К6 в цепи 25 отключает электромагнитную муфту Y1, а в цепи 27 включает электромагнитную муфту Y2 . Шпиндель тормозится и останавливается, но электродвигатель М1 продолжает вращаться в прямом направлении . После останова шпинделя реле К11 отключается и отключает электромагнитную муфту Y2.
При торможении реле К11 включается и отключается с помощью модуля времени АТ . Время торможения шпинделя задается в пределах 2…3 секунды и регулируется потенциометром модуля времени АТ1.
Чтобы включить обратный ход шпинделя “Шпиндель назад “, рукоятку управления следует перевести из положения 2 “Шпиндель стоп “ в положение 1 “Шпиндель назад”. При этом контакты переключателя S9в цепях 3 и 5 размыкаются и реле КЗ отключается, а контакт S9 в цепи 10 замыкается и включает реле К5.
При включении реле контакт К5 в цепи 13 размыкается и отключает магнитный пускатель К7 хода вперед электродвигателя М1 главного привода, контакт К5 в цепи 15 замыкается, включает магнитный пускатель К8 хода назад, и электродвигатель М1 начинает вращаться в обратном направлении .Другой контакт реле К5 в цепи 12 включит реле К6.
Контакт К6 в цепи 25 замыкается, включает электромагнитную муфту Y1, и шпиндель станка начинает вращаться в обратном направлении.
Для останова шпинделя рукоятку управления из положения 1 следует перевести в положение 2 “Шпиндель стоп” . При этом контакты переключателя S9в цепях 3 и 5 замыкается и включается реле КЗ, контакт S9 цепи 10 размыкается и отключается реле К5 . Обесточенное реле К6отключает электромагнитную муфту Y1 и включает электромагнитную муфту Y2 . При отключении реле К5 магнитный пускатель К8 остается включенным и двигатель М1 продолжает вращаться в обратном направлении.
При управлении шпинделем станка правой рукояткой управления команда“Шпиндель вперед“ или “Шпиндель назад“ подается переключателем S8 . При подаче этих команд переключателем S8 реле К2 отключается, а реле К3 остается включенным . В остальном действие электросхемы аналогично действию при управлении шпинделем станка левой рукояткой управления.
Релейноконтакторная схема используемая для управления станком 16Б16П обладает следующими недостатками:
низкая надежность;
большая потребляемая мощность;
большие габариты схемы;
затраты энергии на срабатывание;
при длительном хранении катушки реле стареют.
Используемое напряжение 110 В, для цепи управления не отвечает нынешним требованиям ГОСТа и является опасным для работающих на станке.
Контакты реле и пускателей изнашиваются, в них возникает искрение,что может привести к возникновению пожара.
Тепловые реле используемые для защиты электродвигателей от перегрузки устарели и не могут обеспечить надежную защиту.
Понижающий трансформатор используемый для питания цепей управления и местного освещения уже устарел, нуждается в замене .Он потребляет большую мощность при низком коэффициенте полезного действия.
В связи с указанными недостатками возникает необходимость модернизации станка 16Б16П.
2.3 Предложения по модернизации
Схему управления станком 16Б16П переводим на постоянное напряжение 24В, которое является безопасным для обслуживающего персонала и повышает надежность работы схемы . Для питания местного освещения используем источник питания с напряжением 24В переменного тока . Силовая цепь питается напряжением 380В, частотой 50Гц;
Производим замену устаревших типов электродвигателей на современные серии АИР и RA . В них применены высокопрочные алюминиевые сплавы и пластмассы, использована более совершенная система вентиляции, обеспечивающая снижение температуры нагрева двигателей. Также применены подшипники с улучшенными виброакустическими характеристиками, что позволит снизить уровень шума при работе электродвигателя и повысить надежность;
Применяем современные конструкции аппаратов управления и защиты . Они обладают более высокой надежностью, меньшим шумом в работе и меньшими габаритами и массой;
В данной схеме применяется большое коли чество магнитных пускателей, что делает схему энергоемкой, а также приводит к большому коли честву переключений, изза чего снижается надеж ность схемы . Поэтому магнитные пускатели заменяем тиристорными, с управлением на герконовых реле . Двигатель быстрых перемещений суппорта, а также двигателя насоса охлаждения и насоса смазки включаем с помощью герсиконового контактора . Герконовые реле и герсиконовые контакторы имеют гермитичные магнитоуправляемые контакты, находящиеся в среде защитного газа . В результате их контактная система имеет повышенную износостойкость и надежность контактирования. Контакты не окисляются, не загрязняются и не требуют постоянного ухода и обслуживания;
Производим замену плавких предохранителей в силовой цепи на автоматические выключатели, которые обладают более высокой надежностью и быстродействием;
Защиту цепей управления и местного освещения осуществляем при помощи предохранителей.
2.4 Выбор электродвигателей
Электродвигатели выбирают по следующим условиям:
по роду тока и величине напряжения;
по конструктивному исполнению;
по степени защиты от воздействия окружающей среды;
по частоте вращения ротора;
по мощности.
Покажем выбор электродвигателя для главного привода. Выбор осуществляем по условиям:
nном nмех ( )
Рном Рz / ( )
где nном – номинальная частота вращения электро
двигателя, об/мин;
nмех – частота вращения входного вала механизма,
об/мин;
Рном –номинальная мощность электродвигателя,кВт;
коэффициент полезного действия станка, по
паспорту принимаем =0,9.
По условиям ( ) и ( ) имеем:
nном 1500 об/мин
Рном 4,47/0,9 = 4,97 кВт
По ( ) выбираем электродвигатель марки АИР112М4 с Рном =5,5 кВт, ном= 85,5 %, nном= 1500 об/мин, cos =0,86, Iп/Iном=7,0.
Выбор электродвигателей М2М4 аналогичен . Данные выбора заносим в таблицу 3.
Номинальный ток электродвигателя Iном, А, определяем по формуле:
Iном = Рном / ( 3 Uc ном cos ном ), ( )
где Uc –номинальное напряжение сети, кВ;
ном– коэффициент полезного действия электро
двигателя, о.е.;
cos ном –номинальный коэффициент мощности, о.е..
Пусковой ток электродвигателя Iп, А, определяем по формуле:
Iп = Iном Iп/Iном, ( )
где Iп/Iном –кратность пускового тока, о.е.
Для электродвигателя М1 по формулам ( ) и ( ) имеем:
Iном = 5,5 /( 3 0,38 0,855 0,86 ) =11,3 А
Iп =11,3 7 =79,1 А
Расчет номинальных и пусковых токов остальных электродвигателей аналогичен . Данные заносим в таблицу 3.
Таблица 3
Обо зна чение |
Марка двига теля |
nмех, об/ мин |
Рмех, кВт |
nном, об/ мин |
Рном, кВт |
сos н о.е |
ном, % |
Iп Iном, о,е |
Iном, А |
Iном, А |
М1 |
АИР 112М4 |
1500 |
5,00 |
1500 |
5,500 |
0,86 |
85,5 |
7,0 |
11,3 |
79,1 |
М2 |
АИР 63А2 |
3000 |
0,37 |
3000 |
0,370 |
0,86 |
72,0 |
5,0 |
0,9 |
4,5 |
М3 |
П25 |
3000 |
0,12 |
3000 |
0,125 |
0,75 |
70,0 |
5,0 |
0,4 |
2,0 |
М4 |
АИР 50В2 |
3000 |
0,12 |
3000 |
0,120 |
0,75 |
63,0 |
4,5 |
0,4 |
1,8 |
Страницы: 1, 2, 3, 4, 5, 6, 7, 8