Оценки спектральных радиусов

Пусть Е- линейное пространство с конусом К и знак «» есть отношение предпочтения по конусу К.

Однако, миниэдральные конусы в конечномерных пространствах  обладают следующим фундаментальным свойством:

если конус К миниэдрален, то каждое ограниченное сверху (соответственно, снизу) множество М элементов имеет точную верхнюю sup М (соответственно, точную нижнюю inf  M) грань.

Пример. Рассмотрим в пространстве  с конусом  векторов из   с неотрицательными координатами множество  векторов , удовлетворяющих для заданного вектора неравенству

.

Тогда inf , sup не существует.

Аналогично, если - множество векторов  из, удовлетворяющих неравенству

,

то sup, а inf  не существует.

§3. Интегральные операторы


Большой интерес представляют линейные интегральные операторы

,

действующие в различных пространствах Е функций, определенных на множестве W, которое мы предполагаем ограниченным и замкнутым подмножеством конечномерного пространства Rп [1], [16], [20].

Термин "интегральные уравнения" расплывчат. Обычно под интегральными уравнениями понимают уравнения, в которых неизвестная функция независимого (скалярного или векторного) аргумента встречается под знаком интеграла. Различают линейные и нелинейные интегральные уравнения, в зависимости от того зависит ли уравнение от неизвестной функции линейным или нелинейным образом. Многие линейные интегральные уравнения (в "одномерном" случае) могут быть записаны в виде

                              (1)

где x: [a, b] → R — искомая функция, α, f: [a, b] → R и K: [a, b]×[a, b] → R — заданные функции. Функцию K обычно называют ядром интегрального уравнения.

Уравнение (1), когда K(t, s) = 0 при atsb, называют уравнением Вольтерры. В противном случае его называют уравнением Фредгольма [2]. Уравнение Вольтерры, очевидно, оно может быть переписано в виде

Наиболее распространенными представителями нелинейных интегральных уравнений являются уравнения Урысона

и уравнения Гаммерштейна

Уравнения I и II рода

Если α(t) ≠ 0 при всех t [a, b], то уравнение (1), очевидно, может быть переписано в виде

                                     (2)

Уравнения такого вида называют уравнениями II рода, отличая их от уравнений I рода

                                     (3)

Если в некотором пространстве функций на отрезке [a, b] определить интегральный оператор

то уравнения (2) и (3), очевидно, переписываются в виде

x = Ix + f                                                    (4)

и

0 = Ix + f                                                    (5)

Прежде, чем объяснить разницу между уравнениями I и II родов, введем понятие корректности уравнения. Огрубляя ситуацию, говорят, что уравнение (4) или (5) корректно, если при любых f оно однозначно разрешимо и решение x непрерывно зависит от f. Более точно, говорят, что (линейное) уравнение корректно в паре (E1, E2) банаховых пространств функций на отрезке [a, b], если для любой f E2 уравнение имеет единственное решение xE1 и, кроме того, найдется такая константа C, что ||x||E1 ≤ ||f ||E2.

Разница между уравнениями I и II родов особенно ясно проявляется после записи интегральных уравнений в операторном виде. Суть здесь в следующем. Интегральные операторы в большинстве своем оказываются вполне непрерывными операторами. Для корректной разрешимости уравнения II рода, т. е. уравнения (4) при любой функции f необходимо и достаточно обратимости оператора I – I и ограниченности (I – I)–1, что в случае вполне непрерывного оператора I есть ситуация общего положения. Для разрешимости уравнения I рода необходима обратимость оператора I. В случае же вполне непрерывного оператора I–1 если он существует, необходимо, чтобы он являлся неограниченным [].

Уравнения I рода представляют собой существенно более сложный объект исследования.


§4. Интегральные уравнения с вырожденным ядром и уравнения

типа свертки


Выделим еще два класса линейных интегральных уравнений, часто встречающихся в математическом обиходе [2], [29]. Первый из них состоит из так называемых интегральных уравнений с вырожденным ядром. К ним относят интегральные уравнения, ядро которых представимо в виде

                                            (6)

Интегральные уравнения (скажем, Фредгольма II рода) с вырожденным ядром легко сводятся к системе алгебраических уравнений. Используя (6), уравнение (2) можно переписать в виде

                                          (5)

где

.

Умножение (7) на ηj и интегрирование по t от a до b приводит к системе алгебраических уравнений относительно неизвестных cj:

в которой

,


Уравнение Вольтерры типа свертки выделяется специальным видом ядра K(t, s) = k(ts):

Название наследуется от интегрального оператора свертки

играющего роль умножения в банаховых алгебрах функций. Уравнение типа свертки весьма широко распространено в приложениях.

Уравнение Фредгольма типа свертки выглядит так:

Линейный оператор называется вполне непрерывным, если он переводит каждое ограниченное по норме пространства  множество в компактное множество.

Почти во всякой физической задаче, которая может быть сформулирована с помощью линейных операторов, важной характеристикой типа задачи является спектр соответствующего оператора [13]. Одной из основных характеристик спектра оператора является спектральный радиус этого оператора. Напомним, что те значения , при которых уравнение

,

где  – рассматриваемый оператор, имеет единственное решение, а оператор  ограничен, называются регулярными. Совокупность всех значений , не являющихся регулярными, называется спектром оператора  и обозначается . Спектральным радиусом  оператора называется число, определенное формулой

,    .

Если уравнение

при данном  имеет решение, отличное от тривиального, то  называется собственным значением оператора , а нетривиальное решение уравнения  называется собственным вектором, отвечающим этому собственному значению . При этом собственное значение  называется позитивным, если  и отвечающий ему собственный вектор  принадлежит конусу .

Глава II

Оценки спектральных радиусов интегральных операторов

§1. Сравнение спектральных радиусов двух положительных

операторов


Многочисленные технические, физические, а также экономические задачи приводят к отысканию решения типа

lx = Ax + f.

Известно, что данное уравнение будет иметь единственное решение, которое можно найти, используя метод последовательных приближений, если спектральный радиус оператора A меньше единицы.

В  терминах понятия спектрального радиуса [20], [24], устанавливаются важнейшие теоремы существования неотрицательного решения соответствующих моделей математической экономики (модель Леонтьева, модель Леонтьева-Форда, обобщенная модель Леонтьева-Форда).

Приведем соответствующее определение.

Пусть А – линейный ограниченный оператор, действующий в банаховом пространстве Е. Вещественное или комплексное число l называется регулярным значением оператора  А, если оператор

(lI - A)

имеет ограниченный обратный, определенный во всем пространстве Е. В противном случае соответствующее число l называется точкой спектра оператора А. Совокупность всех точек спектра оператора А обозначается s(А).

Спектральным радиусом r(А) оператора А называется следующая величина:

.

Для ограниченного оператора А спектральный радиус r(А) является ограниченной величиной, более того из принципа Банаха сжатых отображений [23] следует оценка

r(А) < ||A||.

Важнейшим фактом теории линейных положительных операторов является следующий факт:

Пусть конус К – нормальный и воспроизводящий, тогда r(А) является точкой спектра оператора А (теорема Карлина).

Более того, при несущественных дополнительных предположениях r(А) является собственным значением оператора А, которому отвечает собственный вектор x*Î К (теорема Перрона-Фробениуса [2]).

В теории принципа Хикса для интегрального уравнения с неотрицательным ядром важную роль для его справедливости играет условие вида

r(A)<1,                                             (1)

где r(A)  - спектральный радиус интегрального оператора А с ядром K(t,s). Естественно иметь признаки, обеспечивающие выполнение условия (1). Для этого получим соответствующие признаки для случаев, когда А:

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать