Оценки спектральных радиусов

10) A=(aij)    (i,j=1,2,3…);                                                                    (2)

20) A – интегральный оператор вида

,                                   (3)

где W - ограниченное замкнутое множество из евклидова пространства Rm, K(t,s) – измеримая по sÎW  почти при всех значениях tÎW функция, для которой при некоторых p>1 и  выполняется условие:

.                                         (4)

При выполнении условия (4) оператор (3), как известно, действует в пространстве Lp(W) и является вполне непрерывным оператором в этом пространстве [ 29].

Введем в рассмотрение следующие функции

,.                                 (5)

Теорема 1.   Пусть для некоторого aÎ[0,1]  выполняется следующее неравенство

Pa(t)Q1-a(t)£1   (tÎW)                                         (6)

и, кроме того, выполняется одно из двух следующих условий:

10) в неравенстве (6) равенство допускается лишь на множестве точек лебеговой меры нуль;

20) в неравенстве (6)  строгое неравенство выполняется для всех t из некоторого множества wÎW,  mesw>0, оператор А – неразложим в пространстве Lp(W).

Тогда спектральный радиус r(A) оператора А в пространстве Lp(W) меньше чем единица:

r(A)<1.                                                     

Аналогичный результат имеет место и в том случае, когда интегральный оператор (3) действует в пространстве C(W) и неразложим в этом пространстве относительно конуса неотрицательных функций пространства C(W).


Получению оценок спектрального радиуса положительного оператора по информации о поведении этого оператора на фиксированном ненулевом элементе конуса  посвящена достаточно обширная литература [21], [11], [13], [18], [26], [29]. Речь идет о том, что из неравенства вида

   ,

где  - фиксированный элемент из , вытекает оценка снизу

для спектрального радиуса  линейного положительного оператора , а из неравенства вида

                                                 (7)

(при некоторых дополнительных предположениях [29] относительно элемента  и конуса , или оператора ), вытекает оценка сверху для  вида

.                                                   (8)

Для этого, например, достаточно, чтобы конус  был телесным и нормальным, и чтобы  был внутренним элементом конуса . Заметим, что без соответствующих дополнительных предположений утверждать о наличии оценки сверху типа  (8), очевидно, нельзя. В отличие от оценки  сверху, оценка  снизу верна при единственном предположении о том, что .

Поставим вопрос существенно шире: что можно сказать о том, что если вместо условия (7) нам известно условие вида

,                                                (9)

где  - некоторый линейный оператор, действующий в пространстве ? По аналогии с упомянутой оценкой вида (8) естественно спросить: не следует ли из условия (9) оценка

?                                                      (10)

При положительном ответе на этот вопрос получаем возможность иметь как следствия, ранее установленные ([11], [18], [26], [29]) результаты по оценке сверху спектральных радиусов линейных положительных операторов по информации о поведении операторов  и  на фиксированном элементе конуса .


Теорема 2. Пусть конус  - телесен и нормален,  - внутренний элемент конуса .  и  - линейные положительные операторы, действующие в , причем они коммутируют, т.е.

.                                                  (11)

Пусть хотя бы на одном фиксированном элементе  конуса  выполняется неравенство

,

тогда для спектральных радиусов  и  операторов  и  справедливо следующее неравенство:

 .

Доказательство.

Перейдем в пространстве  к - норме [26], [29], которая, во-первых, определена на всем , так как конус  телесен, и, во-вторых, эквивалентна норме в , т.к. конус  нормален. Тем самым пространство  будет полно по -норме. Прежде всего, установим, что для произвольного линейного положительного оператора  справедливо равенство

.                                          (12)

Действительно, из неравенства

,

справедливого для любого , в виду положительности оператора  следует, что

,

откуда, учитывая монотонность -нормы, получим

,

и, следовательно, по определению нормы оператора

.                                            (13)

С другой стороны, из свойств нормы следует, что

.                             (14)

Из (14) и (13) следует равенство (12).

Далее, согласно условию (9), свойству (11) и положительности оператора , имеем

.           (15)

По индукции легко доказать, что для любого  имеет место неравенство

,

и в силу монотонности -нормы

.

Поэтому, согласно (12),

.                                  (16)

Т.к. в силу эквивалентности -нормы и нормы пространства  можно написать, что

, ,                             (17)

то из неравенства (16) и равенств (17) следует утверждение теоремы.

Замечание. Теорема 2 верна также и в том случае, когда операторы  и  полукоммутируют (т.е. ). В доказательстве выражение (15) перепишется в виде:

.

Рассмотрим теперь условия (9) и (10) для строгих неравенств. Т.е. условия, при которых из

следует оценка

.                                             (18)

Прежде, чем перейти к рассмотрению строгих оценок (18), приведем несколько важных теорем, представляющих интерес.

Теорема 3. Пусть  и  - линейные положительные операторы, действующие в пространстве , причем они коммутируют, т.е. . Пусть оператор  неразложим, тогда операторы  и  имеют общий собственный вектор.

Доказательство.

Пусть  - собственный вектор оператора , отвечающий спектральному радиусу . Т.к. операторы  и  коммутируют, то для любого  имеем:

.

Тогда

,

следовательно  - собственный вектор оператора , . Т.к.  - неразложим, то согласно теореме о единственности (с точностью до нормы) собственного вектора у неразложимого оператора [29]:

где .

Тем самым у оператора  есть собственный вектор . Т.е. получаем, что у операторов  и  есть общий собственный вектор .

Теорема доказана.

Важным моментом в доказанной теореме является то, что телесность конуса не предполагается.


Теорема 4. Пусть дана некоторая коммутативная совокупность  линейных положительных операторов, из которых хотя бы один  является неразложимым. Тогда найдется положительный функционал , такой, что  для всех , где  для каждого . При этом .

Доказательство.

На основании предыдущей теоремы, можем утверждать, что все операторы из  имеют общий собственный вектор  (), причем .

 является собственным значением соответствующего оператора  и собственным значением сопряженного оператора , которому отвечают собственный вектор  оператора  и собственный функционал  оператора , где - сопряженная к  полугруппа. Из результатов [22], следует, что сопряженные операторы также составляют коммутирующую совокупность линейных положительных операторов . Таким образом, получим

 и .

Теорема доказана.

Приведем достаточно известный [22] результат.


Теорема 5. Если , то уравнение

                                            (19)

имеет единственное решение

,

которое является пределом последовательных приближений

                          (20)

при любом .

Замечание. Сходимость последовательных приближений (20) равносильна тому, что решение (19) может быть представлено сходящимся по норме рядом Неймана

.

Перейдем к рассмотрению строгих оценок.


Теорема 6. Пусть  и  - линейные положительные операторы, действующие в пространстве , причем они коммутируют, т.е. , и пусть оператор  - неразложим и хотя бы на одном фиксированном элементе конуса  выполнено неравенство

, ().

Пусть выполнено одно из условий:

1)                вполне непрерывен,  - квазивнутренний элемент ;

2)               конус  телесный и нормальный,  - внутренний элемент ;

3)               оператор  -ограничен сверху, конус  воспроизводящий и нормальный;

4)                оператор  -ограничен сверху, конус  воспроизводящий и нормальный,  - квазивнутренний элемент ;

5)               оператор  допускает представление

,

где  - вполне непрерывен, , конус  воспроизводящий и нормальный,  - квазивнутренний элемент ; существует такой элемент  , что .

Тогда справедливо строгое неравенство

.

Доказательство.

В силу теоремы 5 уравнение

имеет решение

.

Очевидно, что это решение удовлетворяет неравенству

.                                      (21)

Т.к.  - неразложим, то из неравенства (21) следует, что - квазивнутренний элемент . Поэтому при любом ненулевом  выполнено неравенство

.                                  (22)

В условиях нашей теоремы существует такой ненулевой функционал , что . На основании теоремы 3 найдется такой  собственный элемент  оператора , отвечающий собственному значению , который будет также собственным элементом оператора , отвечающим некоторому собственному значению  оператора . Тогда

,

и из (22) вытекает

.

Откуда

.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать