Оценки спектральных радиусов

Следовательно,

.

Теорема доказана.

Замечание 1. Теорема 6 верна также и в том случае, когда операторы  и  полукоммутируют, т.к. если операторы  и  полукоммутируют, и оператор  неразложим, то имеет место равенство:

,

т. е. операторы  и  коммутируют.

Замечание 2. Используя равенство

можно расширить возможности получения оценок спектрального радиуса: если некоторая степень  удовлетворяет условиям теоремы 5, то из неравенства

вытекает оценка

.

Пример. Рассмотрим матрицу  и вектор  пространства , а также матрицу , коммутирующую с матрицей :

;   ; , . 

Имеем  , , т.е. . Таким образом, выполнены все условия теоремы 6, следовательно

.

В то время как точное значение спектрального радиуса: .

Заметим, что использование коммутирующего оператора  способствовало уточнению оценки . Действительно, если в примере воспользоваться неравенством (7), то , и тогда, учитывая (8), получим , а эта оценка намного хуже оценки .


§ 2. Оценки спектрального радиуса интегрального оператора


Существует большое количество результатов по оценке спектрального радиуса матричного оператора. Обзор результатов приведен, например, в работе [26]. Стеценко В.Я. в [29] развил некоторые из оценок на интегральные операторы. Следующая теорема является развитием второго метода Островского для интегральных операторов [26].

Теорема 1 . Пусть - матричное ядро. .  Функции , заданны  в квадрате , за исключением прямой  t=s, , . Пусть r=-спектральный радиус матричного интегрального оператора .Тогда

,   где  p>0, q>0,  1/p + 1/q =1,

где                 

                            .                                                  (1)

Доказательство.

Рассмотрим систему

.                                      (2)

Так как - спектральный радиус оператора А, то система линейных однородных уравнений относительно неизвестных    имеет  ненулевое решение. Выберем решение так, чтобы

                                                                            (3)

Представим                                                        (4)


Вычтем почленно из (2) тождество (4):

                                   . 

Так как , то , таким образом:

Применяя неравенство Гельдера для интегралов, и учитывая, что ,

получим:

 =

=

согласно (4)

=

учитывая (1) и (3)

.

 Возведем обе части в степень q.

, тогда

Проинтегрируем по t

 ,

учитывая (3) получим:


            или              

Теорема доказана.

Докажем еще одну теорему, которая является неравенством Фарнелла для интегральных операторов.


Теорема 2. Пусть -непрерывное матричное ядро . Тогда функции , заданные для , порождают действующий и вполне непрерывный оператор в пространстве

.

 Пусть -спектральный радиус матричного интегрального оператора   в пространстве,

, ,

докажем, что

.

Для доказательства теоремы рассмотрим систему

.                                   (5)

Эта система имеет ненулевое решение. Выберем решение так, чтобы

                                                                         (6)

Умножим обе части уравнения (5) на . Получим

                                   .                           (7)

С учетом (5)        ,                 

тогда (7) запишется следующим образом:

                                          (8)

Умножим обе части выражения (8) на , получим

                   .            (9)

Проинтегрируем обе части выражения (9) по

.

Тогда

Учитывая (6),получим

Из неравенства Гельдера   для

получим

.

Следовательно,

.

Теорема доказана.

Получена еще одна оценка сверху для спектрального радиуса интегрального оператора.


§3. Новые оценки спектрального радиуса линейного

положительного оператора


В данном параграфе предлагается дальнейшее развитие оценок спектрального радиуса линейного положительного оператора, заключающееся в том, что сравнивается значение элемента  со значением комбинации элементов , где  - специальным образом подобранный оператор, причем для получения оценок  достаточно знать оценку , а не его точное значение. Результаты, полученные в этом параграфе, являются продолжением работ [11], [18], [26], [29].

Справедлива следующая теорема.

Теорема 1. Пусть  воспроизводящий и нормальный конус,  и - линейные положительные операторы, причем они коммутируют, т.е. . Пусть  - неразложим. Если для некоторого  и  выполняется неравенство

,                                                  (1)

то

.

Если для  верна оценка , тогда

.                                            (2)

Доказательство.

Существует такой функционал , что

 и ,

где - собственное значение оператора , соответствующее функционалу . Применим функционал  к (1):

,

,

.

Т.к. оператор - неразложим, то данный функционал принимает положительные значения на ненулевых элементах конуса  [29]. Поэтому

.

Заменив  на , мы только усилим неравенство (т.к. ):

.

Первое утверждение теоремы доказано. Из последнего неравенства очевидным образом следует неравенство (2). Теорема доказана.

Пример 1. Рассмотрим матрицу  и вектор  пространства , а также матрицу , коммутирующую с матрицей :

;   ; ;  ,

поэтому , и . Все условия теоремы 1 выполнены, следовательно , т.к. , то имеем . В то время как .

При   получим известную теорему  Стеценко В.Я. [20]:

Пусть оператор  неразложим и , K - телесный и нормальный конус, и для некоторого элемента  выполняется неравенство , тогда справедливо неравенство .

Эта теорема является частным случаем теоремы 1.

Кроме того, заметим, что использование коммутирующего с оператором  оператора  способствовало уточнению оценки . Действительно, если в примере 1 предположить , то , и тогда , а эта оценка намного хуже оценки .

Аналогично теореме 1 доказывается следующая теорема.

Теорема 2. Пусть  - воспроизводящий и нормальный конус,  и  - линейные положительные операторы, причем они коммутируют, т.е. . Пусть  - неразложим, и для некоторого  выполняется неравенство

,

где , . Тогда

.

Если для  верна оценка , тогда

.


Теорема 3. Пусть  воспроизводящий и нормальный конус,  и  линейные положительные операторы, причем они коммутируют, т.е. . Пусть  - неразложим. Пусть для некоторого  выполняется неравенство

,                        (3)

где , . Тогда верна оценка:

,

где  - наименьшее позитивное собственное значение оператора .

Доказательство.

Применим  к (3) функционал  из теоремы 1:

.

Т.к. оператор - неразложим, то данный функционал принимает положительные значения на ненулевых элементах конуса  [29]. Поэтому

.

Т.к. , то заменив в последнем неравенстве  на , только усилим его:

,

таким образом . Теорема доказана.

Следствие (к теореме  3). Если в условиях теоремы 3 предположить, что оператор  также неразложим, тогда будет верна оценка:

.

Теорема 4. Пусть  воспроизводящий и нормальный конус,  и  линейные положительные операторы, причем они коммутируют, т.е.. Пусть  - неразложим, и пусть для некоторого  выполняется неравенство

,

, . Если спектральный радиус оператора  известен и , то

.

Если для  известна оценка  и выполняется неравенство , тогда имеет место оценка: .

Доказательство.

Как и при доказательстве теоремы 1, придем к неравенству

.                                        (4)

Предположим, что , тогда, усиливая неравенство (4), получим

,

,

что противоречит предположению. Остается принять, что . Усиливая неравенство (4), получим

       .

Первое утверждение теоремы доказано. Заменяя в неравенстве (4)  на большее число , повторим рассуждения и получим второе утверждение теоремы. Теорема доказана.


Теорема 6. Пусть  воспроизводящий и нормальный конус,  и  линейные положительные операторы, причем они коммутируют, т.е. . Пусть  - неразложим и для некоторого  выполняется неравенство

,

, . Если наименьшее позитивное значение  оператора  известно и , то

.

Если для  известна оценка , и выполняется неравенство , тогда имеет место оценка: .

Доказательство теоремы 5 вполне аналогично доказательству теоремы 4.

Следствие (к теореме 5). Если в условиях теоремы 5 предположить, что оператор  также неразложим, спектральный радиус  оператора  известен и , тогда верна оценка:

.

Теорема 6. Пусть  воспроизводящий и нормальный конус,  и  линейные положительные операторы, причем они коммутируют, т.е. . Пусть  - неразложим. Если для некоторого  выполняется неравенство

,

где ,  и , то верна оценка:

.

Доказательство.

Аналогично тому, как это было сделано в теореме 1, приходим к неравенству

,                              (5)

из которого следует, что . Действительно, предположив противное, т.е. предположив, что , и усилив неравенство (5), получим

,

что противоречит условию. Остается принять, что . Усиливая неравенство (5), получим , откуда следует

.

Теорема доказана.

Эти  результаты были описаны в работах ([26], [29]). Важным моментом доказанных теорем является то, что  телесность конуса не предполагается.

Глава III.

Интегральные операторы в пространствах Лебега и Лоренца

§1. Пространства Лебега и Лоренца


Введем понятие группы преобразований [5]. Пусть есть два преобразования f и g.  G называется группой, если для любых f и g, таких, что  выполняются следующие условия:

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать