2.5.3.1.3 Определим концентрацию соединений железа в дистилляте по формуле (5.1) [2]
где j=0,005% - ожидаемая влажность пара в ступени, обеспечиваемая сепарационным устройством;
CFeраств=2,0 мг/л – концентрация ионов железа в исходной воде (приложение А).
2.5.3.2 Аналогично найдём количество кремниевой кислоты, которое переходит в пар из условия, что кремниевая кислота образует раствор слабого электролита
2.5.3.2.1 По формуле (5.3) [2] найдем коэффициент видимого распределения вещества kрвидSiO2
где n=1,0 – показатель степени зависящий от силы электролита раствора (стр.247 [2]).
2.5.3.2.2 Определим концентрацию соединений железа в дистилляте по формуле (5.1) [2]
где j=0,005% - ожидаемая влажность пара в ступени, обеспечиваемая сепарационным устройством;
CSiO2раств=5,5 мг/л – концентрация кремнезема в пересчёте на SiO2 в исходной воде (приложение А).
2.5.3.3 Найдём количество солей жёсткости, которые переходят в дистиллят
2.5.3.3.1 Рассмотрим соли карбонатной жёсткости, основание которых образует в воде сольный электролит
2.5.3.3.2 По формуле (5.3) [2] найдем коэффициент видимого распределения вещества kрвидHCO3
где n=4,0 – показатель степени, зависящий от силы электролита раствора (стр.247 [2]).
2.5.3.3.3 Определим концентрацию соединений железа в дистилляте по формуле (5.1) [2]
где j=0,005% - ожидаемая влажность пара в ступени, обеспечиваемая сепарационным устройством;
CHCO3раств=2,2 мг/л – карбонатная жёсткость исходной воды.
2.5.4 Из приведённых расчётов следует, что принятое сепарационное устройство обеспечит необходимое качество получаемого дистиллята при соблюдении величины сепарационного пространства камер испарения и технологического режима установки.
2.6 Очистка воды от растворённых газов
По имеющейся на предприятии нормотивно-технической документации [15] деминерализованная вода регламентируется по содержанию свободного кислорода O2 и двуокиси азота CO2. Содержание кислорода в исходной воде СO2 до30 мг/л, СCO2 – до 30 мг/л.
Удаление содержащегося в дистилляте кислорода происходит в процессе испарения согласно закону Генри-Дальтона [2], характеризующего зависимость между концентрацией в воде растворённого газа и его парциальным давлением,
Cг=kг´рг=kг´(робщ-рН2О);
где Сг – концентрация растворённого в воде газа;
kг – коэффициент абсорбции газа водой;
робщ – общее давление;
рН2О – парциальное давление водяного пара.
Как видно из уравнения, понижение концентрации газа в воде происходит с уменьшением разности робщ-рН2О. Таким образом, для удаления газа из воды необходимо создать условия, при которых парциальное давление его над водой было бы равно нулю.
При кипении жидкости парциальное давление растворённых в воде газов стремится к нулю. В таком случае концентрация растворённого газа будет зависеть только от времени дегазации. С увеличением времени дегазации концентрация растворённых газов в воде уменьшается.
В проектируемой установке дегазация циркулирующего рассола происходит равномерно по всем ступеням. Удаление выделившихся газов осуществляется из каждой ступени совместно с неконденсирующимся паром вакуум-насосом.
Естественно, полного освобождения воды от растворённого газа достичь невозможно, поэтому концентрацию газов в дистилляте необходимо определять опытным путём. Однако, учитывая имеющийся опыт проектирования подобных установок, можно предположить, что содержание растворённых газов в дистилляте не превысит допустимых норм качества глубоко обессоленной воды [20].
3 Конструкторский расчёт
3.1 Расчёт регенеративных конденсаторов
3.1.1 По имеющимся данным теплового расчёта принимаем площадь поверхности теплообмена каждого конденсаторов теплоиспользующих ступеней равную Fк=1693,6 м2.
3.1.2 Произведём расчёт конденсатора-пароохладителя для первой ступени
3.1.3 Принимаем среднюю скорость охлаждающего рассола в трубах w=3 м/с (стр. 57 [1]).
3.1.4 Диаметр трубок принимаем dтр=20´2,5 мм, длину lтр=6000 мм, материал – латунь марки Л63, тип пучка – коридорный.
3.1.5 Определим количество трубок в пучке по уравнению неразрывности исходя из заданной скорости воды в трубах n
где u=0,0010222 м3/кг – удельный объём воды при средней температуре в первой ступени tср=(tв1+tв2)/2=(85,6+79,0)/2=82,3 оС по таблице 2-1 [18].
3.1.6 Определим число ходов рассола в конденсаторе z по необходимой площади теплообмена Fк из уравнения неразрывности
где dср=22,5´10-3 м – средний диаметр труб;
принимаем число ходов охлаждающего рассола z=2.
3.1.7 Определим геометрические размеры трубного пучка
3.1.7.1 Для труб выбранного диаметра по таблице (8) [24] находим шаг пучка s=32 мм.
3.1.7.2 Из геометрических размеров камеры испарения принимаем ширину всего трубного пучка Bп=3 м, а ширину одного хода Bп1=1,5 м.
3.1.7.3 Отсюда найдём количество трубок в горизонтальном ряду одного хода пучка n1 принимаем n1=46 шт.
3.1.7.4 Тогда количество рядов составит n2
n2=n/n1=2117/46=46,02;
принимаем количество трубок в вертикальном ряду n2=48 шт.
3.1.7.4 Высота трубного пучка составит Hтр
Hтр=n2´s+dн=48´32´10-3+25´10-3=1,561 м.
3.1.7.5 Уточнённое количество труб в пучке составит n=n1´n2=46´48 =2208 шт.
3.1.8 Уточним площадь поверхности теплообмена Fк’
Fк’=p´n´dср´l´z=3,14´2208´22,5´10-3´6´2=1872 м2.
3.1.9 Принимая высоту межтрубного пространства конденсатора Hм.тр.=1,6 м, находим скорость вторичного пара в межтрубном пространстве w’
где G1=24,05кг/с – количество выпаренного пара в первой ступени;
u1=2,1611 м3/кг – удельный объём пара при температуре насыщения в первой ступени по таблице 2-1 [18].
3.1.10 По действительному количеству трубок уточним значение скорости рассола в трубном пространстве w
3.1.11 Определим коэффициент теплоотдачи в трубках от рассола пару k1
3.1.11.1 Вычислим число Рейнольдса Rе
где r=970,21 кг/м3 – плотность воды при средней температуре рассола в конденсаторе tср=tв1+tв2/2=85,6+79,0/2=82,3 оС по таблице 2-1 [18];
m=351,2´10-6 Па/с – динамическая вязкость воды при средней температуре в ступени по таблице 2-8 [18];
т.к. Re больше критического значения Reкр=105, то движение в трубках развитое турбулентное.
3.1.11.2 Для турбулентного вынужденного движения в трубах найдём значение критерия Нуссельта Nu по формуле (4-17) [13]
где Prж=2,16 – число Пранкля при средней температуре жидкости по таблице (2-8) [18];
Prст=1,91 – число Пранкля при температуре стенки (принимаем равной температуре насыщения в камере);
el=1 – коэффициент, учитывающий влияние начального участка по таблице (4-3) [13], при d/l больше 50.
3.1.11.3 Тогда коэффициент теплоотдачи от жидкости пару составит a1
где l=671,02´103 Вт/м´К – теплопроводность воды при средней температуре рассола в конденсаторе по таблице (2-8) [18].
3.1.12 Найдём значение коэффициента теплоотдачи при конденсации вторичного пара a2
где l=673,7´10-3 Вт/м´К, r=966,86 кг/м3, m=325,3´10-6 Па´с – соответственно теплопроводность, плотность и динамическая вязкость плёнки конденсата при средней температуре в аппарате tпл=ts+ tст/2=92,53+82,3/2=87,4 оС;
e=0,4 – коэффициент, зависящий от количества труб в вертикальном ряду по номограмме на рисунке (4-8) [13]
3.1.13 Пренебрегаем отложениями на поверхностях труб со стороны конденсирующегося пара, а со стороны нагреваемого рассола учтём слой отложений солей жесткости толщиной d=0,5 мм=0,5´10-3м с теплопроводностью lн=7,2 Вт/м´К (стр. 55 [1]).
3.1.14 Тогда по формуле (3.7) [27] найдём коэффициент теплопередачи от пара к охлаждающему рассолу в конденсаторе первой ступени k1
где lст=265 Вт/м´К – теплопроводность материала трубок теплообменника латуни (стр. 55 [1]).
3.1.15 По найденному значению коэффициента уточним площадь поверхности теплообмена конденсатора-пароохладителя первой ступени, как наиболее напряжённой Fк”
3.1.16 Сравнивая значение необходимой площади поверхности теплообмена Fк”=1622,6 м2 с принятой действительной площадью поверхности теплообмена конденсаторов пароохладителей теплоиспользующих ступеней Fк’=1872 м2, видим. что устанавливаемые конденсаторы имеют запас по поверхности теплообмена DF=15% и обеспечивают заданный режим.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21