Развитие представлений о природе теплоты

Таблица 1

Атомные веса элементов, взятые по отношению к атомному весу кислорода, который принят за единицу



Химический элемент

Удельная тепло­емкость

Относительный атомный вес

Произведение

Висмут

0,0288

13,30

0,3830

Свинец

0,0293

12,95

0,3794

Золото

0,0298

12,43

0,3704

Платина

0,0314

11,16

0,3740

Олово

0,0514

7,35

0,3779

Серебро

0.0557

6,75

0,3759

Цинк

0^0927

4,03

0,3736

Теллур

0,0912

4,03

0,3675

Медь

0,0949

3.957

0 . 3755

Никель

0,1035

3.69

О; 381 9

Железо

0.1100

3.392

0,3731

Кобальт

0,1498

2,46

0.3685

Сера

0,1880

2,011

0,3780

Прежде чем рассматривать значение этого результата, проанализируем цифры, приведенные в таблице. 1. Удель­ные теплоемкости большинства химических элементов, кро­ме теллура и кобальта, находятся в приемлемом согласии с современными значениями. Большинство атомных весов также правильны, опять-таки кроме теллура и кобальта. В чем же дело? Мы можем лишь предположить, что Пти и Дюлонг ра­ботали не с теми материалами, как они думали. Они зани­мались своими исследованиями в то время, когда атомная теория находилась еще в «младенческом возрасте» — ей было 20 лет — и тогда было много неясностей отно­сительно того, какие вещества являлись химическими эле­ментами. Теллур был открыт в 1782 г., а селен, находя­щийся в близком химическом сродстве с ним,— в 1817 г., всего за два года до эксперимента Пти и Дюлонга. Воз­можно, они работали с селеном, а не с теллуром: согласие результатов при этом значительно лучшее. С кобальтом дело обстоит сложнее. Атомный вес этого элемента около 40; трудно представить себе, какой химический элемент — металл с близким атомным весом — можно спутать с ко­бальтом. Поэтому кобальт остается загадкой.

Пти и Дюлонг считали, что при более точных измерениях произведение атомного веса на удельную теплоемкость — атомная теп­лоемкость — должно быть в точности постоянным.  Они были бы разочарованы, если бы взяли для своих исследо­ваний такие элементы (как, например, углерод), у которых атомная теплоемкость   значительно меньше. Это расхож­дение получило объяснение. Дело в том, что принцип Больцмана  справедлив, если   только энергия непрерывна. Как бы ни были малы количества энергии, этот принцип тре­бует, чтобы энергия могла делиться между несколькими степенями свободы.  

Закономерность, которую нашли Пти и Дюлонг про­верялась более точными современными калориметричес­кими методами; ей подчиняется большинство химических элементов (закон, согласно которому теплоемкость СV всех твердых тел при достаточно высокой температуре есть величина постоянная, не зависящая от температуры и составляющая около 3R25 Дж/( моль К) - значение Дюлога-Пти, т.е. при нагревании любого вещества на 1К каждый атом поглощает одинаковое количество энергии 3kB . В классической модели твердого тела это объясняется как сумма кинетической энергии, по kBТ/2 на каждую степень свободы (равнораспределение), и потенциальной энергии, равной кинетической. Т.е. энергия 1 моля вещества - U = 3NakBT, а его теплоемкость - СV = (U/T)V = 3NakB = 3R, в полном соответствии с законом Дюлонга - Пти). Пти и Дюлонг вывели также общую формулу скорости охлаждения тел и изобрели катетометр.

 

4. Исследования Фурье

Дальнейшие исследования передачи теплоты показали, что этот процесс осуществляется различными способами, имеющими разную физическую природу. Возникли два самостоятельных направления: изучение теплопроводности и теплового излучения, В изучении теп­лового излучения в XVIII в. были сделаны только самые первые ша­ги, что же касается вопроса теплопроводности, то во второй полови­не XVIII в. начали проводить теоретические и экспериментальные исследования этого явления, а в начале XIX в. была создана теория теплопроводности французским ученым Жаном Батистом Фурье (1768—1830). Итогом его исследований явилась монография «Ана­литическая теория теплоты», вышедшая в свет в 1822 г.

Первая попытка теоретического анализа явлений теплопровод­ности была основана на прямом применении закона охлаждения Ньютона. Однако при этом возникли трудности. Закон охлаждения, если можно так сказать, интегральный закон, а для теории тепло­проводности было необходимо установить соответствующий дифференциальный закон. Если рассматривать поток тепла вдоль стержня, то для того, чтобы составить соответствующее дифференциальное уравнение, нужно рассматривать бесконечно близкие слои в этом стержне. Но разность температур между такими слоями также бесконечно мала и непосредственное применение закона охлаждение Ньютона приводит к выводу, что и поток теплоты   от слоя к слою также должен быть бесконечно малой величиной.   Таким  образом, приходим к нелепому результату, равноценному утверждению, что тело не может ни нагреваться, ни охлаждаться за конечный промежуток времени. Фурье разрешил эту трудность, установив, что поток тепла пропорционален не просто разности   температур, а разности отнесенной к единице длины, т. е., говоря современным языком, градиенту температуры. Он установил основной закон теплопроводности. По Фурье, количество теплоты Q, проходящей через площадь S за время  τ вдоль направления х:

 

 



Где dT/dx изменение температуры на единицу длины (градиент температуры); k — коэффициент теплопроводности, зависящий   от свойств теплопередающей среды. Этот коэффициент Фурье определяет как «количество теплоты,   которое   протекает   в   однородном твердом теле, ограниченном   двумя   бесконечными параллельными плоскостями, в течение одной минуты через площадку в один квад­ратный метр, параллельную пограничным плоскостям (находящимся на расстоянии, равном единице), когда эти плоскости поддерживаются при температурах: одна при температуре кипения: воды, другая — тающего льда».


Чтобы получить общее уравнение теплопроводности, Фурье при меняет найденный закон к бесконечно малым   элементам в тепло-проводящей среде, устанавливая при этом связь между изменением содержания теплоты в ней и изменением температуры. Фурье, решая задачи по теплопроводности, разработал   метод   разложения функций в тригонометрические ряды, получившие название рядов Фурье. Он полагал, что довел теорию теплоты до того состояния, до которого развил механику   Лагранж,   поэтому   по   аналогии с «Аналитической механикой» Лагранжа Фурье назвал  свою  книгу «Аналитической теорией теплоты». Что же касается   взглядов   на природу теплоты, то Фурье признавал теорию теплорода.

 

5. Работы Сади Карно

 

Эту же теорию разделял и другой замечательный ученый, военный инженер Сади Карно (1796-1832). Сади Никола Леонард Карно был старшим сыном знаменитого «организатора по­беды» французской революции Лазаря Карно. Сади родился 1 июня 1796 г. В 1812 г. он поступил в Политехничес­кую школу и окончил ее военным инже­нером в 1814 г. Наполеон к этому време­ни был разгромлен и сослан на остров Святой Елены. Отец Сади был осужден, и военная карьера самого Карно была сомнительной. Спустя три года после окончания школы он сдал экзамен и с чином поручика перешел в главный штаб, занимаясь в основном наукой, музыкой и спортом. В 1824 г. был издан его главный труд «Размышления о дви­жущей силе огня». Через четыре года Карно вышел в отставку в чине капита­на. Умер он 24 августа 1832 г. от холеры. «Размышления о движущей силе ог­ня и о машинах, способных развивать эту силу» начинаются с характеристик огромной движущей силы тепла. «Раз­вивать эту силу и приспособлять ее для наших  нужд—такова  цель тепловых машин», — пишет Карно. Он характери­зует быстрое развитие тепловых машин и предсказывает им большое будущее: «Если когда-нибудь, —говорит Карно,— улучшения тепловой машины пойдут настолько далеко, что сделают дешевой ее установку и использование, то она соединит   в   себе   все   желательные качества и будет играть в промышлен­ности  роль,   всю   величину   которой трудно предвидеть, ибо она не только заменит имеющиеся теперь в употреб­лении двигатели удобным и мощным двигателем, который можно повсюду перенести и поставить, но и даст тем производствам, к которым будет приме­нена, быстрое развитие и может даже создать новые производства». Предви­дение  Карно   блестяще  оправдалось. Двигатели внутреннего сгорания и па­ровые   турбины   получили   широкое развитие, создали новые производства: авиационное и автомобильное. Новые двигатели  второй  половины XX  в — ракеты—создали сверхскоростной воз­душный транспорт и вывели человече­ство в космос. «Движущая сила тепла» в наши дни играет огромную роль. Но во времена Карно она только начинала свой путь как малоэкономичная паровая машина. Хотя со времен Севери и Ныокомена прошло более столетия и паровая ма­шина прочно утвердилась в промышленности, сущность ее работы оставалась неясной, явление получения движения из тепла не было рассмотре­но с достаточно общей точки зрения», как отмечал Карно.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать