Развитие представлений о природе теплоты

Поскольку повышение температуры воды было неве­лико, Джоуль сделал так, чтобы можно было отсоединять цилиндр, поднимать гири и снова опускать их. После 10-20 опусканий гирь за период около 1 ч температура воды повышалась всего примерно на 0,5°С, но Джоуль пользовался достаточно хорошим термометром и получил результат, который совпадает со значением, принятым в настоящее время, 4,18-107 эрг/кал с точностью до 0,5%. Другие методы Джоуля давали согласующиеся между собой результаты; он достиг своей цели, доведя работу действитель­но до конца. Единица энергии — Джоуль — справедливо названа в его честь.

Открытие закона сохранения энергии воскресило представление о теплоте как о форме движения. Это представление, высказанное в 1620 г. в смутной форме ф. Бэконом, развитое в 1743—1745 гг. М.В.Ломоносовым, было вновь высказано одним из основателей закона сохранения и превращения энергии — Джемсом Джоулем в докладе «Некоторые замечания о теплоте и о строении упругих жидкоcтей», сделанном на заседании Манчестерского литературного и философского общества 3 октября 1848 г. Доклад был опубликован только через три года в трудах общества и затем через шесть лет в «Philosophical Magazine». Джоуль начинает с указания на свои опыты, результаты которых были доложены на съезде Британской Ассоциации в 1842 г. Эти опыты показали, «что магнитоэлектрическая машина дает нам возможность обратить механическую силу в теплоту». Вместе с тем они привели к выводу о взаимной обратимости теплоты и механической силы и, следовательно, к выводу, «что теплота является либо vis viva (живой силой) весомых частиц, либо некоторым состоянием притяжения и отталкивания способным порождать vis viva (живую силу)».  Так Джоуль со всей ясностью показывает, что закон сохранения энергии находит свое выражение в превращении работы в теплоту в строго определенном количественном отношении. Ученый приходит к выводу, что теплота является формой кинетической энергии (живой силы) или потенциальной («некоторым состоянием притяжения и отталкивания») весомых частиц.  Упоминая о своих опытах 1844 г. по изменению температуры воздуха путем адиабатического сжатия или расшире ния, он заключает, что упругость газов «должна представлять собой эффект движения частиц, из которых состоит всякий газ». Приводя высказывание Дэви о теплоте как о колебательном движении частиц вещества, Джоуль указывает, что он лично «попытался показать, что вращательное движение, аналогичное описанному сэром Дэви, способно объяснить закон Бойля и Мариотта, а также другие явления, представляемые упругими жидкостями». Джоуль не знает, что Ломоносов объяснил закон Бойля с помощью гипотезы о вращательном движении «нечувствительных частичек». Однако он считает более простой гипотезу, высказанную в 1821 г. Герапатом, в которой частицы газа принимаются движущимися поступательно во всех направлениях, и исходит из этого представления, подчеркивая вместе с тем, что «гипотеза вращательного движения в равной мере хорошо согласуется с этими явлениями».

Джоуль приводит подсчет скорости движения частиц водорода, находящегося при определенной температуре и давлении Он оперирует конкретными цифрами массы, температуры, давления водорода и, считая, что частицы движутся в сосуде кубической формы в равном количестве по трем направлениям, показывает, что «давление будет пропорционально квадрату скорости частиц» Джоуль определяет численное значение этой скорости.

Вывод Джоуля совершенно конкретен газ — водород, масса газа 36,927 грана, давление 30 дюймов ртутного столба, температура 60° Фаренгейта. Скорость частиц водорода оказалась равной 6225 футам в секунду, при температуре замерзания воды (32° Фаренгейта) она будет 6055 футов в секунду Джоуль указывает, что при этих подсчетах частицы водорода считаются не имеющими заметного размера, иначе скорость получалась бы при том же давлении меньшей. Он указывает далее, что «абсолютная температура, давление и vis viva пропорциональны друг другу», а теплоемкость газа «выражается общей суммой vis viva при данной температуре» Таким образом, на основе конкретного числового подсчета Джоуль выводит основной закон идеального газа.

8. Работы Клаузиуса и Томсона. Второе начало термодинамики

Ведущую роль в основании теории тепловых явлений сыграли Р. Клаузиус, В. Томсон и другие ученые.





Статьи Клаузиуса по механической теории теплоты были изданы в 1867 г. В 1879-1891 гг. вышло второе, переработанное и дополненное, издание этой книги под заглавием «Die mechanische Warmetheorie» в трех томах. Второй том книги был посвящен механической теории электричества, третий — кинетической теории газов.

Первая статья Клаузиуса «О движущей силе теплоты» появилась в 1850 г. В ней он разбирает работу Карно (вслед за В. Томсоном) и, отказываясь от его концепции неуничтожаемости теплоты, считает, что надо сохранить основную часть его положения в виде нового принципа — второго начала, который Клаузиус формулирует следующим образом: «Теплота не может переходить сама собой от более холодного тела к более теплому». Клаузиус неоднократно в своих статьях разъяснял смысл выражения «сама собой». «Появляющиеся слова «сама собой», — писал он в «Статьях по механической теории тепла»,— требуют, чтобы быть вполне понятными, еще объяснения, которое дано мною в различных местах моих работ». Теплота в ряде процессов может перейти от холодного тела к теплому, но «тогда одновременно с этим переходом от более холодного к более теплому телу должен иметь место и противоположный переход теплоты от более теплого к более холодному, либо должно произойти какое-либо другое изменение, обладающее той особенностью, что оно не может быть обращено без того, чтобы не вызвать с своей стороны, посредственно или непосредственно, такой противоположный переход теплоты ». Клаузиус указывает, что такой противоположный процесс должен рассматриваться «как компенсация перехода теплоты от более холодного тела к более теплому», и дает новую формулировку принципа: «Переход теплоты от более холодного тела к более теплому не может иметь место без компенсации».

«Это предположение, выставленное мною в качестве принципа, — пишет Клаузиус в своем обобщающем труде, — встретило много возражений, и мне пришлось его неоднократно защищать». В борьбе за утверждение нового принципа большую роль сыграл английский физик Вильям Томсон.

Томсону наряду с Клаузиусом принадлежит заслуга в обосновании второго закона термодинамики. В 1848 г. он сомневался в справедливости закона сохранения энергии, так как в тепловых машинах теплота не полностью переходит в работу (это было показано еще Карно). Работа Карно подсказала Томсону важную мысль о введении температурной шкалы, не зависящей от выбора термометрического тела, — абсолютной шкалы температур. Эта «шкала Кельвина» основана на процессе Карно, который, как известно, носит абсолютный характер, не зависящий от выбора рабочего вещества и характера процессов, применяемых в цикле. Введение «шкалы Кельвина» представляет первый существенный вклад Томсона в термодинамику (1848).

17 марта, 21 апреля и 15 декабря 1851 г. Томсон сделал в Эдинбургском Королевском обществе доклады, опубликованные в «Трудах» общества за 1851 г. и в «Philosophical Magazine» за 1852 г. под заглавием «О динамической теории теплоты». Эта работа представляет собой изложение новой точки зрения на теплоту, согласно которой «теплота представляет собой не вещество, а динамическую форму механического эффекта». Поэтому «должна существовать некоторая эквивалентность между механической работой и теплотой». Томсон указывает, что этот принцип, «по-видимому, впервые... был открыто провозглашен в работе Майера «Замечания о силах неживой природы». Далее он упоминает работу Джоуля, исследовавшего численное соотношение, «связывающее теплоту и механическую силу». Томсон утверждает, что вся теория движущей силы теплоты основана на двух положениях, из которых первое восходит к Джоулю и формулируется следующим образом: «Во всех случаях, когда равные количества механической работы получаются каким бы то ни было способом исключительно за счет теплоты или бывают израсходованы исключительно на получение тепловых действий, всегда теряются или приобретаются равные количества теплоты».

Второе положение Томсон формулирует так: «Если какая-либо машина устроена таким образом, что при работе ее в противоположном направлении все механические и физические процессы в любой части ее движения превращаются в противоположные, то она производит ровно столько механической работы, сколько могла бы произвести за счет заданного количества тепла любая термодинамическая машина с теми же самыми температурными источниками тепла и холодильника».

Эта положение Томсон возводит к Карно и Клаузиусу и обосновывает следующей аксиомой: «Невозможно при помощи неодушевленного материального деятеля получить от какой-либо массы вещества механическую работу путем охлаждения ее ниже температуры самого холодного из окружающих предметов».

К этой формулировке, которую называют томсоновской формулировкой второго начала, Томсон делает следующее примечание: «Если бы мы не признали эту аксиому действительной при всех температурах, нам пришлось бы допустить, что можно ввести в действие автоматическую машину и получать путем охлаждения моря или земли механическую работу в любом количестве, вплоть до исчерпания всей теплоты суши и моря или в конце концов всего материального мира». Описанную в этом примечании «автоматическую машину» стали называть perpetuum mobile 2-го рода и формулировку Томсона кратко выражать как принцип невозможности perpetuum mobile 2-го рода. В 1852 г., развивая положения статьи 1851 г., Томсон приходит к следующим выводам: «1. В материальном мире существует в настоящее время общая тенденция к расточению механической энергии. 2. Восстановление механической энергии в ее прежнем количестве без рассеяния ее в более чем эквивалентном количестве не может быть осуществлено при помощи каких бы то ни было процессов с неодушевленными предметами и, вероятно, также никогда не осуществляется при помощи организованной материи, как наделенной растительной жизнью, так и подчиненной воле одушевленного существа. 3. В прошлом, отстоящем на конечный промежуток времени от настоящего момента, Земля находилась и спустя конечный промежуток времени снова очутится в состоянии, непригодном для обитания человека; если только в прошлом не были проведены и в будущем не будут предприняты такие меры, которые являются неосуществимыми при наличии законов, ныне регулирующих известные процессы, протекающие ныне в материальном мире». В этой небольшой заметке, носящей название «О проявляющейся в природе общей тенденции к рассеянию механической энергии», Томсон формулирует знаменитую концепцию «тепловой смерти».

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать