Рентгеноструктурний аналіз молибдену

Iэкс(S) = Iк(S) + Iф(S) (145)


Відповідно до закону збереження інтенсивності когерентна частина нормується за допомогою рівності


 (146)


Інтегруючи (145) і враховуючи Ik(S), одержимо


 (147)

де


 (148)


— інтенсивність, яка виходила б в аналогічних умовах від незалежних атомів. За визначенням,


a(S) — 1 = [Iнор(S) — f2(S)]/f2(S) (149)


Враховуючи, що Iнор(S) = kIk(S) і беручи до уваги рівність (145) і (148), знайдемо

a(S) — 1 = k[Iэкс(S)/f2(S) — <I(S)>/f2(S)] (150)


Рівняння для розрахунку функції 4πR2ρ(R) має вигляд


 (151)


У ньому невідомими є нормуючий множник k і доданок <I(S)>/f2(S). Як показують дослідження, значення функції розподілу сильно залежать від нормуючого множника k, тому виникає питання, як його визначити. З (147) витікає, що крива Iэкс(S) повинна осцилювати навколо кривої <I(S)>. Отже, крива Iэкс(S)/f2(S) також повинна осцилювати навколо кривої <I(S)>/f2(S). Хід цієї кривої можна визначити графічно. Для цього за експериментальними даними слід побудувати графік функції Iэкс(S)/f2(S) залежно від S. Потім провести криву <I(S)>/f2(S) так, щоб виконувалася умова


 (152)


При цьому верхню межу інтеграції бажано брати як можна велику, використовуючи тим самим всі спостережувані інтерференційні ефекти.

Щоб знайти нормуючий множник, потрібно знати інтенсивність когерентного розсіювання і інтенсивність фону. З рівнянь (149) і (150) знаходимо


Ikнор(S) = f2(S){k[Iэкс(S)/f2(S) — <I(S)>/f2(S)] + 1} (153)


Аналогічно, користуючись рівністю (148), визначимо


Iфнор(S) = kIф(S) = f2(S)[k I(S)>/f2(S) — 1] (154)

Теоретичні розрахунки показують, що значення нормуючого множника залежать від верхньої межі інтеграції в рівнянні (151). Межі можливих значень k можуть бути визначені по експериментальній кривій інтенсивності. Як вже відомо, інтенсивність когерентного розсіювання є величиною позитивною, отже,



Ця нерівність показує, що нижня межа параметра 1/k може бути визначена по значенню найглибшого мінімуму на кривій Iэкс(S)/f2(S) тобто


1/kmin = [ <I(S)>/f2(S) — Iэкс(S)/f2(S) ]max (155)


Інтенсивність фону — теж позитивна величина. Тоді


 тобто


Верхня межа параметра 1/k визначиться якнайменшим значенням функції <I(S)>/f2(S) ,тобто


 (156)


Нерівності (155) і (156) обмежують можливі значення 1/k.

Як нормуючий множник можна узяти середнє значення, обчислене із співвідношення


 (157)


На мал. 4.6 як ілюстрація показані криві Iэкс(S)/f2(S) і <I(S)>/f2(S) для знаходження 1/kmin і 1/kmax. Згідно малюнку якнайменше значення <I(S)>/f2(S) = 4,3 при S = 1,5 Å-1, а найбільше значення різниці [ <I(S)>/f2(S) — Iэкс(S)/f2(S) ]max = 2,5 при S =4,0 Å-1. Отже, 1/k = (4,3 + 1,5)/2 = 2,9; k = 0,35. Висловлений спосіб визначення нормуючого множника і інтерференційної функції розсіювання електронів не пов'язаний з громіздкими обчисленнями. Він простий і доступний. На прикладі германію і кремнію було показано, що визначувані цим методом структурні параметри повністю співпадають зданими рентгенографічних досліджень.


Точність визначення структурних параметрів


Як наголошувалося, основними кількісними характеристиками структури рідин є радіальні функції розподілу атомної і електронної густини.

Точність, з якою можуть бути визначені міжатомні відстані і числа найближчих сусідів, зв'язана: а) з наближеним характером рівнянь, що зв'язують структуру речовини з кутовим розподілом інтенсивності розсіювання, обмеженою точністю табличних значень атомних чинників і некогерентного розсіювання, неоднозначністю вибору нормуючого множника; б) з труднощами експериментального характеру (наприклад, обривом кривої інтенсивності при кінцевому значенні S), а також неточностями вимірювання і обліку різних чинників; погрішностями визначення коефіцієнта поглинання, впливом некогерентного фону. Подолання експериментальних труднощів досягається зйомкою в строго монохроматичному випромінюванні, застосуванням сцинтиляційних лічильників для реєстрації розсіяного рентгенівського випромінювання, секторної методики в електронографії. Сучасна апаратура дозволяє вимірювати інтенсивність розсіювання з точністю 2—3%. Вплив обриву кривої інтенсивності на вигляд функції розподілу піддається аналітичному опису. Всесторонній аналіз цього питання був проведений В. Н. Пилиповичем, Р. Хоземаном, Я. І. Стецивом і ін.

Помилкові максимуми радіальних функцій розподілу. Найістотнішою у визначенні структурних параметрів рідин і аморфних тіл є помилка, що виникає через обрив кривої інтенсивності. Вона може привести до виникнення помилкових максимумів радіальної функції розподілу, до зміни положення максимумів, їх ширини і форми. Щоб виробити кількісну оцінку цієї помилки, потрібно знати функцію а(S) для явно відомого розподілу атомів. З цією метою скористаємося рівнянням (135), з якого виходить, що


 (158)


Виключаючи нульове розсіювання, одержимо

 (159)


Припустимо, що максимуми на кривій розподілу атомної густини мають форму кривих Гауса. Тоді загальна функція може бути представлена у вигляді


 (160)


Підставляючи (160) в (159) і обчислюючи інтеграл, знаходимо


 (161)


З цього рівняння виходить, що чим більше <ΔRk2> тим швидше затухає а(S), осцилюючи щодо одиниці. Якщо ж <ΔRk2> = 0, що відповідає розподілу атомів в кристалі, то


 (162)


Скориставшися аналітичним виразом а(S), знайдемо функцію розподілу, відповідну k-му координаційному максимуму, по формулі


(163)

де Smax — найбільше значення S, до якого визначена крива а(S); Rk — відстань від початку координат до основи перпендикуляра, опущеного з вершини максимуму кривої розподілу на вісь абсцис.

Цей інтеграл обчислюється аналітично тільки для двох граничних випадків: Smax → ∞ і Smax → 0. У першому випадку одержуємо початкову функцію Гауса:


 (164)


Коли Smax мало, другим доданкам у фігурних дужках (163) можна знехтувати. Поклавши


 , знайдемо

 (165)


Оскільки у області координаційного максимуму другий член малий порівнянню з першим, то


 (166)


Цей результат показує, що якщо експериментальну криву інтенсивності обмежити малими значеннями Smax то на кривій радіального розподілу атомів окрім піку при R = Rk, відповідного k-й координаційній сфері, з'являється ряд побічних (помилкових) піків, що тягнуться в область розташування сусідніх піків. Помилкові максимуми розташовуються майже симетрично по обидві сторони від центрального максимуму. Їх положення знаходиться по формулі


R = Rk ±2,5π/ Smax (167)



На мал. 4.8 приведені нормована крива інтенсивності і крива 4πR2ρ(R) одержані для рідкої ртуті А. Ф. Ськришевськім сумісне з Д. П. Карлікової і Д. Н. Карликовим. Вимірювання інтенсивності проведені до значення sinθ/λ = 0,62 Å-1 що відповідає Smax = 7,8 Å-1. Поява помилкових максимумів по обидві сторони від істинних на кривій 4πR2ρ(R) можна чекати при 2,1 і 4,13 Å для R1 = 3,12 Å і при 5,2 і 7,1 Å для R2 = 6,2 Å.

Як видно з малюнка, побічні максимуми відповідають приблизно цим же відстаням. Помилкові максимуми функції 4πR2ρ(R) з періодом ΔR = ±2,5π/ Smax можуть з'явитися через неточність вимірювання інтенсивності при великих кутах розсіювання. Це завжди треба мати на увазі, оскільки помилки вимірювання I(S) після множення на S можуть істотно спотворити результати.

Амплітуда помилкових піків функції радіального розподілу помітно зменшується при множенні функції S[а(S) — 1] на чинник ехр(— bS2). Коефіцієнт b вибирають з умови ехр(— bS2) ≤ 0,1. Наприклад, для рідкої ртуті при Smax = 7,8 Å-1 знаходимо b = 0,038 Å2.


Обчислення координаційних чисел

Координаційне число визначається за площею під максимумом, яка у разі одноатомної речовини аналітично представляється формулою


 (168)


Якщо для обчислення цього інтеграла вибрати вираз (160), то набудемо істинне значення координаційного числа


 (169)


Якщо ж скористатися виразом (166), то


 (170)


Межі інтеграції визначаємо з умови (мал. 4.9)


sinSmax(R—Rk) = 0 , Smax(R—Rk) = ± π , R = Rk ± π/Smax


Таким чином, координаційне число, обчислюване за площею під максимумом теоретичної кривої розподілу, знаходиться в межах

nk ≤ n ≤ 0,18nk (171)


Тут проаналізовані далеко не всі джерела погрішностей у визначенні функції 4πR2ρ(R). Але вже з сказанного ясно, що за допомогою дифракційних методів достовірний результат може бути одержаний лише на основі ретельно проведеного експерименту і обліку всіх вірогідних погрішностей обчислень. Ознаками правильного визначення функції розподілу є: а) незначна осциляція кривої 4πR2ρ(R) при малих R; б) відсутність мінімумів нижче осі абсцис і малих максимумів, розташованих симетрично по обидві сторони від головних максимумів. Помилкові максимуми на кривих розподілу, які можуть з'явитися при розрахунку, ускладнюють визначення істинної картини будови рідини або аморфної речовини. Тому при дослідженні структури не слід обмежуватися тільки кривими розподілу, необхідно детально аналізувати також і криві інтенсивності, оскільки вони безпосередньо пов'язані з розташуванням атомів і молекул.






 







Методика роботи та аналіз результатів

1. Формування зразків

2. Отримання дифрактограм зразків

3. Побудова радіальних функцій

4. Визначення відстаней та координаційних чисел


1. Зразки формувалися з Мо у вигляді тонких плівок утворених за допомогою ионо-плазменого розпилення. Формування плівок в цих умовах створює наднерівноважні умови і це приводить до того що Мо знаходиться в наднерівноважному стані. Тому ці зразки являються вихідними зразками. По політермах були визначенні ключеві температури при яких суттєво змінювался електричний опір плівок тобто відбувалися фазові переходи при яких змінювалася і їх структура. Таких температур було визначено дві: 600 ºС та 700 ºС. Тому шляхом відпалу цих зразків були отримані зразки відповідно при відпалах 600 ºС та 700 ºС.

2. Дифрактограми отримувалися скануванням рентгенограм отриманих шляхом зйомки зразків в камерах РКД на рентгенівських установках УРС-60.

3. По отриманим дифрактограмам були визначені залежності інтенсивності від кута; і ці значення були занесені в спеціальну програму середовища Excel за допомогою якої були внесені необхідні поправки і побудована радіальна функція густини.

4. З побудованих радіальних функцій в середовище Excel були визначенні відстані та координаційні числа шляхом заміни кривої радіальної функції сумою чотирьох гаусовських кривих. Для вихідного Мо координаційні числа на відстанях першої, 3-ї та 4-ї координаційних сфер дуже близькі до кристалічного Мо, а координаційне число 2-ї координаційної сфери значно менше ніж в кристалічному. Таким чином були встановлені відстані для чотирьох координаційних сфер. При відпалах відстані координаційних сфер спочатку збільшуються, а потім зменшуються але не суттєво; але при 700 ºС третя координаційна сфера по суті має дві відстані: 4,2 Å та 4,54 Å, що свідчать про початок суттєвої перебудови структури.

Висновок

Структурні зміни Мо при відпалах до 700 ºС приводять до формування нанокристалічного стану.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать