Гашение поля мало сказывается на характере переходного процесса нарастания тока якоря при коротких замыканиях, так как этот ток достигает максимального значения Iуд примерно через полпериода (при частоте 50Гц через 0,01 с), а за это время защита не успевает сработать. Оно лишь уменьшает время, в течение которого по обмотке якоря проходит ток короткого замыкания и, следовательно, снижает вероятность повреждения машины этим током.
Резкие изменения нагрузки. При резких изменениях нагрузки синхронной машины, работающей параллельно с сетью, возникают колебания ротора около установившегося значения угла θ, называемые качаниями. Допустим, что машина работает при некоторой нагрузке и развивает электромагнитный момент М1 = Мвн1, соответствующий углу θ1 (рис. 1.60). Если резко увеличить внешний момент, приложенный к валу ротора, до величины Мвн2, при которой возрастает отдаваемая машиной электрическая (в генераторе) или механическая (в двигателе) мощность, то угол θ будет постепенно увеличиваться до величины θ2, соответствующей новому значению электромагнитного момента М2 = Мвн2. Однако из-за инерции ротора угол θ, увеличиваясь, достигнет значения θ3 > θ2, а затем под действием синхронизирующего момента начнет уменьшаться до величины θ4 < θ2. В результате возникают колебания угла θ вокруг установившегося значения θ2, которые сопровождаются колебаниями угловой скорости вращения ротора (качаниями). Опасность таких качаний заключается в том, что из-за инерции ротора угол θ может существенно превзойти 90°, и машина выпадет из синхронизма.
Частота собственных колебаний синхронных машин невелика (0,5–2,0 Гц), что объясняется большим моментом инерции ротора. Так как изменения угла θ сопровождаются изменениями мощности машины и тока якоря, на наличие колебаний в машине указывают колебания стрелок приборов (амперметра и вольтметра), включенных в цепь якоря. Собственные колебания в синхронных машинах наблюдаются не только при резких изменениях нагрузок, но и в стационарных режимах, так как у машин, работающих параллельно с сетью, всегда имеются небольшие возмущения. Особенно часто такие колебания возникают при холостом ходе, когда на валу нет внешнего момента.
Рис. 1.60 – Угловая характеристика синхронного генератора при качаниях ротора
Уменьшения амплитуды качаний и ускорения их затухания достигают применением на роторе короткозамкнутой обмотки, называемой демпферной или успокоительной. Успокоительное действие демпферной обмотки при качаниях объясняется тем, что в ее стержнях при изменении частоты вращения ротора индуктируется э. д. с. и по ним проходит ток, что сопровождается потерей энергии. Эта обмотка получила свое название потому, что ее действие подобно действию механического демпфера, потери на трение в котором успокаивают колебания механизма (например, сельсина).
Колебания ротора синхронной машины могут быть вынужденными, если на него действует периодически изменяющийся внешний момент. Такие колебания образуются в синхронных генераторах, приводимых во вращение от поршневых машин, например от двигателей внутреннего сгорания, а также в синхронных двигателях, служащих для привода поршневых компрессоров. Поэтому для уменьшения неравномерности вращающего момента двигатели внутреннего сгорания, предназначенные для вращения синхронных генераторов, и поршневые компрессоры часто снабжают маховиками. Генераторы и электродвигатели должны в этом случае иметь достаточно мощную демпферную обмотку.
1.19 Несимметричные режимы работы синхронных генераторов
Работа генератора при несимметричной нагрузке. Наличие однофазных нагрузок (осветительной сети, тяговых трансформаторов электрифицированных железных дорог и т.п.) вызывает несимметрию фазных токов синхронных генераторов. Анализ несимметричных режимов, как и для трехфазных трансформаторов, производится методом симметричных составляющих, при котором трехфазная несимметричная система токов IА, IB и IC разлагается на системы токов прямой, обратной и нулевой последовательностей.
Система токов прямой последовательности İA1, İB1, İC1 создает в трехфазной синхронной машине м.д.с. якоря, вращающуюся синхронно с ротором, т.е. неподвижную относительно обмоток ротора. Этот режим подробно рассмотрен в предшествующих параграфах настоящей главы. Индуктивное сопротивление фазы для токов прямой последовательности хпр=хсн.
Система токов обратной последовательности İА2, İВ2, İC2 создает м.д.с. якоря, вращающуюся в сторону, противоположную вращению ротора, так как имеет место чередование максимумов тока в фазах, обратное по отношению к токам прямой последовательности. Следовательно, магнитное поле токов обратной последовательности пересекает обмотки ротора с двойной частотой и индуктирует в обмотке возбуждения и демпферной обмотке э. д. с, имеющую в два раза большую частоту, чем э. д. с. обмотки якоря. Наличие э.д. с. и токов двойной частоты в обмотках ротора заставляет при расчете токов обратной последовательности пользоваться сверхпереходными (или переходными) индуктивными сопротивлениями. Другими словами, для потоков обратной последовательности короткозамкнутая демпферная клетка играет ту же роль, что и короткозамкнутая обмотка ротора асинхронной машины по отношению к вращающемуся потоку.
Поток обратной последовательности равномерно пересекает то продольную, то поперечную ось ротора. Вследствие этого среднее значение индуктивного сопротивления машины для токов обратной последовательности можно принять равным
. (1.60)
Если демпферная обмотка расположена по всей окружности якоря, то можно считать, что
. (1.61)
Сопротивления для токов обратной последовательности можно получить экспериментально, если включить синхронную машину в сеть и вращать ротор с синхронной частотой против направления вращения поля.
Токи двойной частоты, возникающие в демпферных обмотках и массивном роторе, вызывают дополнительные потери, из-за которых может возникнуть опасный нагрев ротора и снижение к. п. д. машины. Увеличение сечения стержней демпферной обмотки с целью снижения активного сопротивления и потерь не всегда дает положительный эффект, так как при двойной частоте сильно сказывается эффект вытеснения тока. Взаимодействие м. д. с. возбуждения ротора и потока обратной последовательности статора создает знакопеременный колебательный момент, вызывающий вибрацию машины и шум.
Система токов нулевой последовательности IА0, IB0, IC0 создает во всех трех фазах м. д. с, совпадающие по времени, так как
İA0= İВ0 = İC0 (1.62)
На рис. 1.61 показаны магнитные поля, образуемые этими токами в каждой из фаз якоря для простейшего случая сосредоточенной обмотки. Легко заметить, что для основной гармоники магнитный поток в воздушном зазоре от токов нулевой последовательности равен нулю. Вследствие этого токи нулевой последовательности могут создавать только потоки рассеяния Фσ0 и пульсирующие потоки гармоник, кратных трем.
Рис. 1.61 – Потоки рассеяния, образуемые токами нулевой последовательности в обмотках якоря
При диаметральной обмотке якоря потоки рассеяния токов нулевой последовательности замыкаются так же, как потоки рассеяния для токов прямой последовательности, а поэтому приблизительно равны и соответствующие индуктивные сопротивления х0 = xsa. При укорочении шага обмотки индуктивное сопротивление уменьшается и достигает минимума при шаге обмотки, равном 2/3 полюсного деления, так как в этом случае во всех пазах проводники нижнего и верхнего слоев принадлежат разным фазам.
Следовательно, при y= (2/3)τ полный ток нулевой последовательности каждого из пазов будет равен нулю, а индуктивное сопротивление будет определяться потоком лобовых частей. При рекомендуемом для синхронных машин шаге y = 0,8τ индуктивное сопротивление х0 уменьшается почти в три раза по сравнению с его значением при диаметральной обмотке. Таким образом, обычно 0,3xsa < х0 < xsa.
Экспериментально величину х0 можно определить, если включить все фазы обмотки якоря последовательно и присоединить их к источнику однофазного переменного тока. Обмотку возбуждения при этом нужно замкнуть накоротко, а ротор привести во вращение с номинальной частотой. В этом опыте U = 3I0x0, откуда x0 = U/(3I0). Наличие короткозамкнутой обмотки возбуждения на роторе уменьшает дифференциальный поток рассеяния, а вращение ротора выравнивает фазные сопротивления, которые при неподвижном роторе оказались бы различными из-за различия в положении проводников отдельных фаз относительно оси обмотки возбуждения. Если на роторе имеется мощная демпферная обмотка, то обмотка возбуждения оказывает незначительное влияние на величину х0, т.е. ее можно не замыкать накоротко л не приводить во вращение.
Несимметричные установившиеся короткие замыкания. Простейшим примером несимметричной нагрузки является однофазное короткое замыкание. Этот режим помимо методического имеет и большое практическое значение, так как его результаты можно использовать при определении токов аварийного короткого замыкания.
При однофазном коротком замыкании (рис. 1.62, а)
; и .
Из условия (2–108) получим для этого режима
. (1.63)
Следовательно, в данном случае во всех трех фазах возникают токи прямой, обратной и нулевой последовательностей, хотя и имеют место условия İВ1 + İВ2 + İВ0 = İВ = 0 и İС1 + İС2 + İСо =İС = 0.
Вращающийся магнитный поток возбуждения индуктирует во всех фазах э.д.с. только прямой последовательности Ė1 = Ė0. Пренебрегая активными сопротивлениями, для фазы А– X можно написать
(1.64)
или с учетом (1.63)
EA = jiA(xnp + x2 + x0)/3, (1.65)
откуда установившийся ток однофазного короткого замыкания
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36