Рис. 2.27 – Возникновение кругового огня на коллекторе и зависимость предельно допустимых напряжений ик.макс от коллекторного деления tк:
1 – первичная дуга при замыкании смежных коллекторных пластин,
2 – газы и пары меди, 3 – мощная дуга
Для предотвращения возможности возникновения кругового огня необходимо снижать величину максимального напряжения между смежными коллекторными пластинами. На рис. 2.27, б показаны зависимости предельно допустимых величин максимальных напряжений между смежными коллекторными пластинами uк.макс от величины коллекторного деления tк для мощных электрических машин. Чем меньше толщина изоляции Δиз между пластинами и тоньше сами пластины, тем ниже должно быть выбрано максимальное напряжение. Безусловно, эти рекомендации являются ориентировочными, так как в них не учитываются частота вращения, величина воздушного зазора и т.д.
Искрение под щетками способствует появлению кругового огня, так как при этом происходит интенсивный износ щетрк, а следовательно, повышается вероятность появления токопроводящих мостиков.
Довольно длительное время была распространена гипотеза, согласно которой первоначальной причиной возникновения кругового огня является вытягивание дуги из-под щетки. Но она не подтвердилась практикой и экспериментами. Одним из доказательств развития кругового огня из единичной вспышки были опыты с генератором, работающим в режиме холостого хода со снятыми щетками. В этом случае искрение под щетками отсутствовало, но при достаточно высоком напряжении uк.макс возникал круговой огонь:
1) когда промежуток между смежными пластинами засорялся осколком щетки; 2) когда между этими пластинами искусственно зажигали короткую дугу с помощью вспомогательного электрода.
Реакция якоря искажает магнитное поле в воздушном зазоре машины, увеличивая магнитную индукцию под одним из краев главных полюсов (см. рис. 2.24). Вследствие этого возрастает максимальное напряжение uк.макс между смежными пластинами и увеличивается опасность кругового огня.
Для машин с петлевой и волновой обмотками соответственно:
, (2.15)
где ωс–число витков в секции; р–число пар полюсов.
Чтобы уменьшить вероятность возникновения кругового огня, в крупных машинах используют обмотки якоря с одновитковыми секциями (ωc=1), снижают среднее напряжение между коллекторными пластинами до 15–18 В (при этом соответственно ограничивают активную длину якоря) и принимают меры для уменьшения искажающего действия реакции якоря, т.е. индукции Baq. Уменьшение Baq проще всего достигается путем увеличения воздушного зазора. По этой причине машины постоянного тока обычно выполняют со сравнительно большим воздушным зазором. Однако увеличение воздушного зазора требует соответствующего повышения м.д.с. обмотки возбуждения (для создания необходимого магнитного потока). А это приводит к увеличению размеров статора и всей машины.
Более выгодным является применение особой формы воздушного зазора: минимального под серединой полюса и расширяющегося к краям, где возрастает м.д.с. якоря. При такой форме зазора магнитное сопротивление для потока главных полюсов увеличивается в меньшей степени, чем для потока, создаваемого поперечной реакцией якоря. Следовательно, расширяющийся зазор требует меньшего повышения м. д. с. обмотки возбуждения, чем равномерный.
Рис. 2.28 – Принцип действия (а) и устройство (б) компенсационной обмотки:
1 – главный полюс, 2 – обмотка возбуждения, 3 – компенсационная обмотка
Еще более кардинальной мерой является применение компенсационной обмотки (рис. 2.28), которую располагают в пазах главных полюсов и соединяют последовательно с обмоткой якоря. Эту обмотку включают таким образом, чтобы образуемая ею м. д. с. Fк была направлена встречно м.д.с. якоря Faq и компенсировала ее действие. При Fк = Faq м. д. с. якоря практически не будет искажать магнитное поле в воздушном зазоре. Компенсационная обмотка существенно усложняет конструкцию машины, поэтому ее применяют только в машинах средней и большой мощности, работающих в тяжелых условиях (частые пуски, толчки нагрузки, перегрузки по току и т.п.). Кроме того, компенсационную обмотку применяют также в тех случаях, когда машина проектируется при жестких габаритных ограничениях, так как компенсационная обмотка позволяет уменьшить воздушный зазор и, следовательно, размеры обмотки возбуждения.
2.7 Коммутация
Коммутацией называют процесс изменения тока в секциях обмотки якоря при переходе их из одной параллельной ветви в другую. В более широком смысле слова под коммутацией понимают все явления и процессы, возникающие под щетками при работе коллекторных электрических машин. Если щетки искрят, то говорят, что машина имеет плохую коммутацию; если искрение отсутствует, то коммутацию называют хорошей. Качество коммутации (интенсивность искрения) в значительной степени определяет работоспособность машины и ее надежность в эксплуатации.
Причины искрения щеток. Искрение может вызываться большим количеством причин, которые обычно разбивают на две группы: механические и электромагнитные.
Типичными механическими причинами являются: биение коллектора, его эллиптичность, шероховатость рабочей поверхности коллектора, наличие выступающих коллекторных пластин и изоляционных прокладок, вибрация щеткодержателей и т.д. Все эти причины приводят к вибрации щеток, в связи с чем возможен кратковременный разрыв контакта между щеткой и коллекторными пластинами и возникновение кратковременной электрической дуги. Особенно трудно обеспечить отсутствие вибрации щеток при больших окружных скоростях коллектора – порядка 50 м/с и выше, что связано с особыми свойствами щеточного контакта.
Электромагнитные причины приводят к тому, что даже в случае идеального состояния щеточного контакта при выходе коллекторной пластины из-под щетки происходит разрыв электрической цепи, по которой проходит ток, и возникает короткая электрическая дуга, повреждающая сбегающие части щетки и коллекторных пластин. Следует отметить, что искрение, вызванное электромагнитными причинами, повреждает поверхность коллектора и приводит к вибрации щеток, т.е. способствует возникновению искрения по механическим причинам. Неустойчивость же щеточного контакта, обусловленная механическими причинами, оказывает существенное влияние на электромагнитные процессы, происходящие в коммутируемых секциях. Поэтому, как правило, искрение щеток на коллекторе является результатом совместного действия многих причин.
Необходимо иметь в виду, что стоимость ремонта и эксплуатации коллекторных машин (замена щеток, проточка коллекторов, устранение последствий кругового огня и т.д.) очень велика и в некоторых машинах (например, в тяговых электродвигателях) составляет за один год около 1/3 стоимости самой машины. Поэтому мероприятия, проводимые по уменьшению интенсивности искрения щеток, могут дать существенный технико-экономический эффект.
Качество коммутации оценивается степенью искрения (классом коммутации) под сбегающим краем щетки, из-под которого выходят пластины коллектора при его вращении. Допускаемые степени искрения согласно ГОСТ 183–74 приведены в табл. 2.1.
Как видно из табл. 2.1, при длительной работе машины допускается только слабое искрение под щетками. Однако требования ГОСТа относятся только к контролю качества коммутации электрической машины при выпуске с завода.
Таблица 2.1.
Степень искрения (класс ком мутации) |
Характеристика степени искрения |
Состояние коллектора и щеток |
1 |
Отсутствие искрения (темная коммутация) |
– |
1 1/4 |
Слабое точечное искрение под небольшой частью щетки |
Отсутствие почернения на коллекторе и нагара на щетках |
1 1/2 |
Слабое искрение под большей частью щетки |
Появление следов почернения на коллекторе, легко устраняемых протиранием поверхности коллектора бензином, а также следов нагара на щетках |
2 |
Искрение под всем краем щетки. Допускается только при кратковременных толчках нагрузки и перегрузках |
Появление следов почернения на коллекторе, неустраняемых протиранием поверхности коллектора бензином, а также следов нагара на щетках |
3 |
Значительное искрение под всем краем щетки с наличием крупных и вылетающих искр. Допускается только для моментов прямого (без реостатных ступеней) включения или реверсирования машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальнейшей работы |
Значительное почернение на коллекторе, неустраняемое протиранием коллектора бензином, а также подгар и разрушение щеток |
В эксплуатации может наблюдаться искрение значительно большей интенсивности, поскольку машина работает в форсированных режимах (при перегрузках или повышенной частоте вращения). Повышенное искрение щеток может вызываться и другими особенностями эксплуатации: вибрацией и ударами машины, работой на высоте более 1000 м над уровнем моря, работой в запыленных помещениях или в агрессивной среде и т.д. Поэтому технические требования, предъявляемые к разработке машин постоянного тока, должны обязательно учитывать условия их будущей эксплуатации.
Основное уравнение коммутации. При вращении якоря секции его обмотки переходят из одной параллельной ветви в другую, вследствие чего в них изменяется направление тока (рис. 2.29, а). Большую часть времени ток секции равен току параллельной ветви ia = Ia/(2a). Изменение направления тока в секции происходит за период времени Тк, в течение которого соединенные с секцией коллекторные пластины соприкасаются со щеткой (рис. 2.29, б). Время Тк, в течение которого секция оказывается замкнутой накоротко щеткой, называют периодом коммутации; секции, в которых изменяется ток, называют коммутируемыми.
Период коммутации
(2.16)
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36