Расчет на изгиб производится по формулам: (балка на двух опорах), где Р - разрушающая нагрузка, l - расстояние между опорами, b - ширина образца, h - его высота; (консоль), здесь l- расстояние от места закрепления балки до точки приложения нагрузки.
Прочность па сжатие и срез (временное сопротивление) для льда рассматриваемая величина является в некоторой степени условной [24], разрушение льда не обусловлено однозначно определенным пределом напряжений. Вследствие ползучести начало разрушения льда и соответствующее этому моменту значение внутренних напряжений существенно зависят от скорости приложения нагрузки, условий деформирования и других факторов. Это является одной из причин больших различий в значениях предела прочности льда, определенных разными исследователями.
Многочисленные экспериментальные значения предела прочности льда при сжатии получены в основном на образцах кубической и реже цилиндрической формы при «быстром» нагружении. Установлено, что σсж увеличивается с понижением температуры льда и имеет большие значения при нагрузке, приложенной перпендикулярно к оси кристаллов. Значение σсж уменьшается при скорости нагружения σ’>0,2 МПа/с и при увеличении размеров образцов. Отмечено увеличение σсж с ростом σ’ (при малых ее значениях) и последующее медленное увеличение прочности с возрастанием σ’.
Лед подчиняется реологической модели в виде параллельно соединенных тел Шведова (Бингама) и Гука. В. В. Лавров объясняет этот факт пластичностью льда. При малых скоростях деформации процессы сдвига успевают закрыть («залечить») наиболее опасные дефекты (трещины в полости) и сделать напряженное состояние в образце более однородным. Это обусловливает увеличение предела прочности. При больших скоростях деформации такого явления не возникает. Предел прочности льда на срез σс вычисляется по формуле , где P - разрушающая нагрузка, S - площадь среза.
1.2.7. Упругие свойства
Известно, что упругое поведение кристаллов в общем виде описывается следующими соотношениями между тензорами деформации (εjk) и напряжения (σjk):
εjk = Sikjlσji ; σjk =Cikjlεji
где Sikjl и Cikjl - матричные коэффициенты, представляющие собой соответственно константы податливости и жесткости, а i,k,j,l =1,2,3. Для гексогональных кристаллов, подобных льду, имеется только пять независимых модулей упругости, не равных нулю (C11, C12, C13, C33, C44), или соответствующих им коэффициентов Sikjl. Между ними имеют место следующие соотношения:
;;;;
для
Поликристаллический лед с достаточно малыми размерами входящих в его состав кристаллов (по сравнению с размерами подвергнутых деформациям образцов) можно рассматривать как изотропное тело, упругость которого описывается модулем Юнга Е (модулем нормальной упругости), модулем сдвига G, модулем объемной упругости К и коэффициентом Пуассона v Модули упругости и сдвига определяются через постоянные Ламе μ и λ которые являются коэффициентами, связывающими механические напряжения в твердом теле с возникающими деформациями. Между указанными характеристиками упругости существует известная аналитическая связь:
;;
;
Различают изотермический и адиабатический модули упругости. При изотермической деформации температура тела не меняется, и модули упругости, соответствующие этому случаю, называются изотермическими. В случае адиабатических деформаций модули с достаточной точностью определяются выражениями:
;
где Т - температура деформируемого тела, α - коэффициент линейного расширения, СР - удельная теплоемкость при постоянном давлении. Для льда различие адиабатических и изотермических модулей мало.
Константы упругости пресноводного льда. Упругое поведение монокристалла обусловливается главным образом изменениями межмолекулярных, расстояний под действием приложенного напряжения. Однако, возбужденные напряжением движения дефектов (дислокаций) также вносят свой вклад в деформацию. При движении дефектов к зонам равновесия твердое тело будет непрерывно деформироваться. Эта деформация, будет не вполне упругой. Однако, если напряжение прикладывается и снимается в течение достаточно короткого промежутка времени (например, при прохождении звуковой волны), дефекты не успевают участвовать в достаточной мере в деформации, которую в этом случае можно считать упругой. По этой причине константы упругости льда, получаемые при высокочастотных акустических измерениях (будем называть их динамическими характеристиками), более надежны, чем те же характеристики, получаемые из экспериментов, в которых измеряется, деформация тела, испытывающего статически приложенную нагрузку.
При температуре от -3 до 40°С лед ведет себя как вполне упругое тело, которое подчиняется закону Гука, если приложенное напряжение все же превышает определенного значения и продолжительность его воздействия достаточно коротка. Это происходит при напряжении сжатия до 0,1 МПа, скорости приложения нагрузки около 0,05 МПа/с и продолжительности воздействия напряжения менее 10 с.
Многочисленные измерения модулей упругости статическими методами (при кратковременном приложении полного цикла нагрузки в течение порядка 510 с) показывают, что модули Юнга поликристаллического льда лежат в пределах 0,3*10311,0*103 МПа. Для столбчато-гранулированного пресноводного льда при действии нагрузки перпендикулярно направлению длинных осей кристаллов выведена зависимость «статического» модуля Юнга (МПа) от температуры в интервале от -3 до -40°С.
Ec=(5,69 – 0,0648Tc)*103
При этом коэффициент Пуассона уменьшается с понижением температуры примерно от 0,5 при -6°С до 0,38 при -40°С. В то же время для монокристалла в диапазоне от 0 до -40°С модуль Юнга и коэффициент Пуассона не зависят от температуры и равны соответственно 8,34*103МПа и 0,35. Это объясняется тем, что в деформировании поликристаллического льда существенную роль играет зависимость скольжения по границам зерен от температуры, а также возможное обратимое движение дислокаций.
Динамические константы упругости могут быть определены по измерению скорости звука во льду. Скорость продольной звуковой волны c1 определяется постоянными Ламе λ, μ и плотностью вещества
Скорость сдвиговой звуковой волны c1 определяется одной постоянной Ламе, совпадающей с модулем сдвига, и плотностью вещества:
Коэффициент Пуассона рассчитывается по значениям сl и сt по уравнению:
Следовательно, скорости продольных и сдвиговых воли однозначно связаны с константами упругости льда.
В таблице 9 представлены характерные значения динамических констант упругости поликристаллического льда. Динамический модуль Юнга поликристаллического льда увеличивается практически линейно от 7,2*103МПа при температуре льда -10°С до 8,5*103МПа при -180°С. По экспериментам с образцами поликристаллического льда, извлеченного из скважины в гренландском леднике, динамический модуль Юнга уменьшается приблизительно на 20% при уменьшении плотности льда с 915 до 903 кг/м.
Были исследованы структурно-моделированного льда и ледяного покрова реки Нева [34]. Все образцы имели различную структуру и ориентировку кристаллов: моделированный лед состоял из кристаллов, средние размеры которых были 12мм; кристаллы льда реки Нева были размером от 2 до 8см.
Таблица 9. Динамические константы упругости поликристаллического льда при температуре -5°С, определенные импульсным ультразвуковым методом |
|||
Модуль Юнга, 102 МПа |
Модуль сдвига, 10 МПа |
Коэффициент Пуассона |
Модуль объемного сжатия, 102 МПа |
89,5 |
- |
- |
- |
91,7 |
33,6 |
0,36 |
113,0 |
98,0 > |
36,8 |
0,33 |
96,1 |
90,0 |
- |
- |
- |
91,893,8 |
34,535,2 |
0,33 |
88,189,2 |
99,4 |
38,0 |
0,31 |
87,2 |
85,0 |
32,0 |
0,34 |
- |
86,9 |
- |
- |
- |
95,0 |
36,0 |
0,3 |
- |
88,098,0* |
- |
- |
- |
80,092,0 |
30,032,0 |
0,350,38 |
- |
* - определен резонансным методом. |
Средний модуль Юнга, определенный резонансным методом (размер образцов 3,5 х 4,0 х 33,0 см) при температуре -6°С, имел следующие значения:
- ледяной покров реки Нева 9,5*103МПа;
- лед структурно-моделированный:
образец вырезан параллельно поверхности 8,8*10 МПа;
образец вырезан перпендикулярно поверхности 9,8*103МПа.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9