Термодинаміка і синергетика

Поруч з рівноважним станом стаціонарний стан асимптотичних стійкий (по теоремі про мінімальне виробництво ентропії ), по цьому через безперервність ця термодинамічна гілка тягнеться у всій докритичній області. Досягши критичного значення термодинамічна гілка може стати нестійкою, так що будь-яке, навіть мале обурення, перекладає систему з термодинамічної гілки в новий стійкий стан, який може бути впорядкованим. Отже, при критичному значенні параметром відбулася біфуркація і виникла нова гілка рішень і, відповідно, новий стан. У критичній області, таким чином, подія розвивається по такій схемі

Флуктуація ® Біфуркація

нерівноважний фазовий перехід ®

Народження впорядкованої структури

Біфуркація в широкому розумінні - придбанні нової якості рухами динамічної системи при малій зміні її параметрів ( виникнення при деякому критичному значенні параметра нового вирішення рівнянь ) . Відзначимо, що при біфуркації вибір наступного стану носить суто випадковий характер, так що перехід від одного необхідного стійкого стану до іншого необхідного стійкому стану проходить через випадкове (діалектика необхідного і випадкового) . Будь-який опис системи, що зазнає біфуркацію, включає як детерміністичний, так і імовірнісний елементи, від біфуркації до біфуркації поведінці системи детерміновано, а в околиці точок біфуркації вибір подальшого шляху випадковий. Проводячи аналогію з біологічною еволюцією можна сказати, що мутації - це флуктуації, а пошук нової стійкості грає роль природного відбору. Біфуркація в деякому розумінні вводить у фізику і хімію елемент історизму - аналіз стану в1, наприклад, має на увазі знання історії системи, що пройшла біфуркацію.

Загальна теорія процесів самоорганізації відкритих сильно не рівноважних системах розвивається на основі універсального критерію еволюції Прігожіна-Гленсдорфа. Цей критерій є узагальненням теореми Прігожіна про мінімальне виробництво ентропії. Швидкість виробництва ентропії, обумовлена зміною термодинамічних сил Х, згідно цьому критерію підкоряється умові


dx P / t £ 0 (2.6)£


Ця нерівність не залежить не від яких припущень про характер зв'язків між потоками і силами в умовах локальної рівноваги і носить по цьому універсальний характер . У лінійній області нерівність (2.6. ) переходить в теорему Прігожіна про мінімальне виробництво ентропії . Отже, в неравновестной системі процеси йдуть так, тобто система еволюціонує таким чином, що швидкість виробництва ентропії при зміні термодинамічних сил зменшується (або рівна нулю в стаціонарному стані).

Впорядковані структури, які народжуються далеко від рівноваги, відповідно до критерію (2.6.) і є диссипативні структури.

Еволюція біфуркації і подальшої самоорганізації обумовлено, таким чином, відповідними не рівноважними обмеженнями.

Еволюція змінних Х описуватиметься системою рівнянь


  (2.7)


де функції F як завгодно складним чином можуть залежать від самих змінних Х і їх просторових похідних координат r і часу t . Крім того, ці функції буду залежать від параметрів, що управляють, тобто тих характеристик, що змінюються, які можуть сильно змінити систему . На перший погляд здається очевидним, що структура функції { F } буде сильна визначаться типом відповідної даної системи . Проте, можна виділити деякі основні універсальні риси, незалежні від типу систем.

Вирішення рівняння (2.7), якщо немає зовнішніх обмежень, повинні відповідати рівновазі при будь-якому виді функції F . Оскільки рівноважний стан стаціонарний, то


Fi ({Xрав},равl ) = 0 (2.8)l


У більш загальному випадку для нерівноважного стану можна аналогічно написати умову


Fi ({X},l) = 0 (2.9)l


Ці умови накладають певні обмеження універсального характеру, наприклад, закони еволюції системи повинні бути такими, щоб виконувалася вимога позитивності температури або хімічної концентрації, що отримуються як вирішення відповідних рівнянь.

Іншою універсальною межею є нелінійним . Хай, наприклад деяка єдина характеристика системи задовольняє рівнянню


 (2.10)


де до - деякий параметр, l - зовнішні обмеження, що управляють . Тоді стаціонарний стан визначається з наступного рівняння алгебри


l - kX = 0 (2.11)l

звідки

Xs = l / до (2.12)l


У стаціонарному стані, таким чином, значенні характеристики, наприклад, концентрації, лінійно змінюється залежно від значень обмеженняl, що управляєl, і є для кожного єдиний стан Хs . Абсолютно однозначно можна передбачити стаціонарне значення Х при будь-якомуl,если мати хоч би два експериментальні значення Х(l). Керуючий параметр може, зокрема, відповідати ступеню віддаленості системи від рівноваги . Поведінка в цьому випадку системи дуже схожі на рівновазі навіть за наявності сильно нерівноважних обмежень.


Мал. 2.6. Ілюстрація універсальної межі нелінійності в самоорганізації структур


Якщо ж стаціонарне значення характеристики Х не лінійно залежить від обмеження, що управляє, при деяких значеннях, то при одному і тому ж значенні є декілька різних рішень . Наприклад, при обмеженнях система має три стаціонарні рішення, малюнок 2.6.в. Така універсальна відмінність від лінійної поведінки наступає при досягненні параметром, що управляє, деякого критичного значення l - виявляється біфуркація. При цьому в нелінійній області невелике збільшення може привести до неадекватно сильному ефекту - система може зробити стрибок на стійку гілку при невеликій зміні поблизу критичного значенняl, малюнок 2.6.в. Крім того з перебувань на гілці А1в можуть відбуватися переходи Ав1 ( або навпаки ) навіть раніше, ніж будуть досягнуті полягання В або А, якщо обурення накладаються на стаціонарний стан, більше значення, відповідного проміжній гілці А В . Обуреннями можуть служити або зовнішня дія або внутрішні флуктуації в самій системі. Таким чином, системі з множинними стаціонарними станами властиво універсально властивостям внутрішньо збудливість і мінливості скачкам.

Виконання теореми по мінімально виробництві ентропії в лінійній області, а, як узагальнення цієї теореми, виконання універсального критерію (2.6.) і в лінійній, і в нелінійній області гарантують стійкість стаціонарних нерівноважних станів. В області лінійності необоротних процесів виробництво ентропії грає таку ж роль, як термодинамічні потенціали в рівноважній термодинаміці. У нелінійній області величина dP / dt не має якого або загальної властивості, проте, величина dx P/dt задовольняє нерівності загального характеру (2.6.), яка є узагальненням теореми про мінімальне виробництво ентропії.


2.3 ПРИКЛАДИ САМООРГАНІЗАЦІЇ РІЗНИХ СИСТЕМ


Розглянемо як ілюстрацію деякі приклади самоорганізації систем у фізиці, хімії, біології і соціумі


2.3.1 ФІЗИЧНІ СИСТЕМИ

В принципі навіть в термодинамічній рівновазі можна вказати приклади самоорганізації, як результати колективної поведінки . Це, наприклад, всі фазові переходи у фізичних системах, такі як перехід рідина - газ, феромагнітний перехід або виникнення надпровідності . У нерівноважному стані можна назвати приклади високої організації в гідродинаміці, в лазерах різних типів, у фізиці твердого тіла - осцилятор Ганна, тунельні діоди, зростання кристалів.

У відкритих системах, міняючи потік речовини і енергії із зовні, можна контролювати процеси і направляти еволюцію систем до станів, все більш далеких від рівноваги. В ході нерівноважних процесів при деякому критичному значенні зовнішнього потоку з неврегульованих і хаотичних станів за рахунок втрати їх стійкості можуть виникати впорядковані стани, створюватися дисипативні структури.


2.3.1а ОСЕРЕДКИ БЕНАРА

Класичним прикладом виникнення структури з повністю хаотичної фази є конвективні осередки Бенара . У 1900 році була опублікована стаття Х.Бенара з фотографією структури, що по вигляду нагадувала бджолині соти (мал. 2.7).


Мал. 2.7. Осередки Бенара :

а) - загальний вид структури

б) - окремий осередок.


Ця структура утворилася в ртуті, налитій в плоску широку судину, що підігрівається знизу, після того, як температурний градієнт перевищив деяке критичне значення . Весь шар ртуті (або іншій в'язкій рідині) розпадався на однакові вертикальні шестигранні призми з певним співвідношенням між стороною і висотою (осередки Бенара). У центральній області призми рідина піднімається, а поблизу вертикальних граней - опускається . Виникає різниця температур Т між нижньою і верхньою поверхнею DТ = Т2 - Т1 > 0 .Для малих до критичних різниць Т < DТkp рідина залишається в спокоїD><D, тепло від низу до верху передається шляхом теплопровідності . Досягши температури підігріву критичного значення


Т2 = Тkp (відповідно Т = DТkp )


починається конвекція. Досягши критичного значення параметра Т, народжується, таким чином, просторова диссипативна структура . При рівновазі температури рівні Т2 =Т1, DТ = 0 . При короткочасному підігріві (підводі тепла) нижньої площини, тобто при короткочасному зовнішньому обуренні температура швидко стане однорідною і рівною її первинному значенню . Обурення затухає, а стан - асимптотика стійко. При тривалому, але до критичному підігріві ( DТ < Тkp ) в системі знову встановиться простий і єдиний стан, в якому відбувається перенесення до верхньої поверхні і передачі його в зовнішнє середовище (теплопровідність), мал. 2.8, ділянка а . Відмінність цього стану від рівноважного стану полягає в тому, що температура, щільність, тиск стануть неоднорідними. Вони будуть приблизно лінійно змінюватися від теплої області до холодної .


Мал. 2.8. Потік тепла в тонкому шарі рідини


Збільшення різниці температур DТ, тобто подальше відхилення системи від рівноваги, приводить до того, що стан нерухомої теплопроводящей рідини стає нестійким ділянка б на малюнку 2.8. Цей стан змінявся стійким станом (ділянка в на мал. 2.8), утворенням осередків, що характеризується . При великих різницях температур рідина, що покоїться, не забезпечує велике перенесення тепла, рідина ²вимушена рухатися, причому кооперативним колективним узгодженому образом.

Далі це питання розглядається в 3 розділі.


2.3.1б ЛАЗЕР ЯК СИСТЕМА, ЩО САМООРГАНИЗУЄТЬСЯ

Отже, як приклад фізичної системи, впорядкованість якої є наслідок зовнішньої дії, розглянемо лазер.

При найгрубішому описі лазер - це якась скляна трубка, в яку поступає світло від некогерентного джерела (звичайної лампи), а виходить з неї вузьконаправлений когерентний світловий пучок, при цьому виділяється деяке кількості тепла.



При малій потужності накачування ці електромагнітні хвилі, які випускає лазер, некорельовані, і випромінювання подібно до випромінювання звичайної лампи. Таке некогерентне випромінювання - це шум, хаос. При підвищенні зовнішньої дії у вигляді накачування до порогового критичного значення некогерентний шум перетвориться в ²чистий тон, тобто випускає число синусоїдальна хвиля - окремі атоми поводяться строго корельованим чином, само організовуватимуться.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать