Лампа ® Лазер
Хаос ® Порядок
Шум ® Когерентне випромінювання
У надкритичній області режим ²звичайної лампи ²виявляється не стабільним, а лазерний режим стабільним, малюнок 2.9.
Мал. 2.9. Випромінювання лазера в до критичної (а) і
надкритичній (б) області.
Видно, що утворення структури в рідині і в лазері формально описується вельми схожим чином. Аналогія пов'язана з наявністю тих же самих типів біфуркацій у відповідних динамічних рівнях.
Докладніше це питання розглянемо в практичній частині, в 3 розділі.
2.3.2 ХІМІЧНІ СИСТЕМИ
У цій області синергетика концентрує свою увагу на тих явищах, які супроводжуються утворенням макроскопічних структур. Зазвичай якщо дати реагентам про взаємодіяти, інтенсивно перемішуючи реакційну суміш, то кінцевий продукт виходить однорідний. Але в деяких реакціях можуть виникати тимчасові, просторові або змішані (просторові - тимчасові) структури. Найбільш відомим прикладом може служити реакція Белоусова-Жаботінського.
2.3.2а РЕАКЦІЯ БЕЛАУСОВА-ЖАБОТІНСЬКОГО
Розглянемо реакцію Белоусова-Жаботинского. У колбу зливають в певних пропорціях Ce2(SO4), KBrO3, CH2(COOH)2, H2SO4, додають декілька крапель індикатора окислення - відновлення - ферроїна і перемішують. Конкретніше - досліджуються окислювально-відновні реакції
Ce 3+_ _ _ Ce 4+ ; Ce 4+_ _ _ Ce 3+
у розчині сульфату церію, броміду калі, молочної кислоти і сірчаної кислоти . Додавання ферогена дозволяє стежити за ходом реакції по зміні кольору ( по спектральному поглинанню). При високій концентрації реагуючих речовин, що перевищують критичне значення спорідненості, спостерігаються незвичайні явища.
При складі
сульфат церію - 0,12 ммоль/л
броміду калі - 0,60 ммоль/л
молочної кислоти - 48 ммоль/л
3-нормальна сірчана кислота
небагато ферроїна
При 60 Із зміни концентрації іонів церію набуває характер релаксаційних коливанні - колір розчину з часом періодично змінюється від червоного (при надлишку Се3+ ) до синього ( при надлишку Це 4+), малюнок 2.10а.
Мал. 2.10. Тимчасові (а) і просторові (б)
періодичні структури в реакції
Белоусова-Жаботінського
Така система і ефект отримали назву хімічний годинник. Якщо на реакцію Белоусова-Жаботінського накладати обурення - концентраційний або температурний імпульс, тобто вводячи декілька Мілімолей бромату калі або торкаючись до колби в перебігу декількох секунд, то після деякого перехідного режиму знову здійснюватимуться коливання з такою ж амплітудою і періодом, що і до обурення. Дисипативна Белоусова-Жаботінського, таким чином, є асимптотичне стійкою. Народження і існування незгасаючих коливань в такій системі свідчить про те, що окремі частини системи діють погоджено з підтримкою певних співвідношень між фазами. При складі
сульфату церію - 4,0 ммоль/л
броміду калі - 0,35 ммоль/л
молочної кислоти - 1,20 міль/л
сірчаної кислоти - 1,50 міль/л
небагато ферроїна
при 20 З в системі відбуваються періодичні зміни кольору з періодом близько 4 хвилин. Після декількох таких коливань спонтанно виникають неоднорідності концентрації і утворюються на деякий час ( 30 хвилин ), якщо не підводити нові речовини, стійкі просторові структури, малюнок 2.10б . Якщо безперервно підводити реагенти і відводити кінцеві продукти, то структура зберігається необмежено довго.
2.3.3 БІОЛОГІЧНІ СИСТЕМИ
Тваринний світ демонструє безліч високо впорядкованих структур і що прекрасно функціонують. Організм як ціле безперервно отримує потоки енергії (сонячна енергія, наприклад, у рослин) і речовин (живильних) і виділяє в навколишнє середовище відходи життєдіяльності. Живий організм - це система відкрита. Живі системи при цьому функціонують безумовно в далечіні від рівноваги. У біологічних системах, процеси самоорганізації дозволяють біологічним системам ²трансформувати ²енергію з молекулярного рівня на макроскопічний. Такі процеси, наприклад, виявляються в м'язовому скороченні, що приводить до всіляких рухів, в утворенні заряду у електричних риб, в розпізнаванні образів, мови і в інших процесах в живих системах. Складні біологічні системи є одним з головних об'єктів дослідження в синергетиці. Можливість повного пояснення особливостей біологічних систем, наприклад, їх еволюції за допомогою понять відкритих термодинамічних систем і синергетики в даний час остаточно неясна . Проте можна вказати декілька прикладів явного зв'язку між понятійним і математичним апаратом відкритих систем і біологічною впорядкованістю.
Конкретніше біологічні системи ми розглянемо в 3 розділі, подивимося динаміку популяцій одного вигляду і систему ²жертва - хижак².
2.3.4 СОЦІАЛЬНІ СИСТЕМИ
Соціальна система є певним цілісним утворенням, де основними елементами є люди, їх норми і зв'язки. Як ціле система утворює нову якість, яка не зводиться до суми якостей її елементів. У цьому спостерігається деяка аналогія із зміною властивостей при переході від малого до дуже великого числа частинок в статичній фізиці - перехід від динамічних до статичних закономірностей . При цьому вельми очевидно, що всякі аналогії з физико-хімічними і біологічними системами вельми умовні, тому проводити аналогію між людиною і молекулою або навіть щось подібне було б не допустимою помилкою . Проте, понятійний і математичний апарат нелінійної нерівноважної термодинаміки і синергетики виявляються корисними в описі і аналізі елементів самоорганізації в людському суспільстві.
Соціальна самоорганізація - один з проявів спонтанних або вимушених процесів в суспільстві, направлена на впорядкування життя соціальної системи, на більше саморегулювання. Соціальна система є системою відкритої здатна, навіть вимушена обмінюватися із зовнішнім світом інформацією, речовиною, енергією. Соціальна самоорганізація виникає як результат цілеспрямованих індивідуальних дій її складових.
Розглянемо самоорганізацію в соціальної системи на прикладу урбанізації зони. Проводячи аналіз урбанізації географічних зон можна припустити, що зростання локальної заселеності даної території буде обумовлено наявністю в цій зоні робочих місць. Проте, тут існує деяка залежність : стан ринку, що визначає потребу в товарах і послугах і зайнятості . Звідси виникає механізм нелінійного зворотного зв'язку в процесі зростання щільності населення. Таке завдання вирішується на основі логістичного рівняння, де зона характеризується зростанням її продуктивності N, нових економічних функцій S - функція в локальній області i міста. Логістичне рівняння описує еволюцію чисельності населення і може бути тоді представлена у вигляді
dni
¾ = Кni(N + å Rk Sik - ni) - dni ( 2.13 )å
dt до
де Rk вага даної до - ой функції, її значущість. Економічна функція змінюється із зростанням чисельності : визначається попитом на до - й продукт в i - й області залежно від збільшення чисельності населення і конкуренції підприємств в інших зонах міста. Появу нової економічної функції грає роль соціально економічній флуктуації і порушує рівномірний розподіл щільності населення. Такі чисельні розрахунки по логістичних рівняннях можуть бути корисні прогнозуванні багатьох проблем.
У розглянутих прикладах в літературі є лише загальні виводи і висновки, не приведені конкретні аналітичні розрахунки або чисельні.
Метою справжньої дипломної роботи є аналітичні і чисельні дослідження самоорганізації різних систем.
РОЗДІЛ 3. АНАЛІТИЧНІ І ЧИСЕЛЬНІ ДОСЛІДЖЕННЯ САМООРГАНІЗАЦІЇ РІЗНИХ СИСТЕМ
3.1 ОСЕРЕДКИ БЕНАРА
Для того, щоб експериментально вивчити структури, досить мати сковороду, трохи масла і якою ні будь дрібний порошок, щоб було помітно рух рідини . Наллємо в сковороду масло з розмішаним в нім порошком і підігріватимемо її знизу (мал. 3.1)
Мал. 3.1. Конвективні осередки Бенара
Якщо дно сковороди плоске і нагріваємо ми її рівномірно, то можна вважати, що у дна і на поверхні підтримуються постійні температури, знизу - Т1, зверху - Т2 . Поки різниця температури DТ = Т1 - Т2 невелика, частинки порошку нерухомі, а отже, нерухома і рідина .
Плавно збільшуватимемо температуру Т1. Із зростанням різниці температур до значення DТc спостерігається все та ж картина, але коли DТ > DТc, все середовище розбивається на правильні шестигранні осередки (див. Мал. 3.1) в центрі кожної з яких рідина рухається вгору, по кроях вниз . Якщо узяти іншу сковороду, то можна переконатися, що величина виникаючих осередків практично не залежить від її форми і розмірів . Цей чудовий досвід вперше був виконаний Бенаром на початку нашого століття, а самі осередки отримали назву осередків Бенара.
Елементарне якісне пояснення причини руху рідини полягає в наступному . Із-за теплового розширення рідина розшаровується, і в більш нижньому шарі щільність рідини r1 менше, ніж у верхньому r2 . Виникає інверсний градієнт щільності, направлений протилежно силі тяжіння . Якщо виділити елементарний об'єм V, який трохи зміщується вгору в наслідку обурення, то в сусідньому шарі архімедова сила стане більше сили тяжіння, оскільки r2 > r1 . У верхній частині малий об'єм, зміщуючись вниз, потрапляє в область зниженої щільності, і архімедова сила буде менше сили тяжіння FA < FT, виникає низхідний рух рідини. Напрям руху низхідного і висхідного потоків в даному осередку випадково, рух же потоків в сусідніх осередках, після вибору напрямів в даному осередку детерміновано. Повний потік ентропії через межі системи негативний, тобто система віддає ентропію, причому в стаціонарному стані віддає стільки, скільки ентропії проводиться усередині системи (за рахунок втрат на тертя).
dSe q q T1 - T2
¾ = ¾ - = q * ¾¾¾ < 0 (3.1)*¾¾¾
dt T2 T1 T1 * T2
Освіта саме стільникової комірчастої структури пояснюється мінімальними витратами енергії в системі на створення саме такої форми просторової структури . При цьому в центральній частині осередку рідина рухається вгору, а на її периферії - вниз.
Подальше надкритичне нагрівання рідини приводить до руйнування просторової структури - виникає хаотичний турбулентний режим.
Мал. 3.2. Ілюстрація виникнення теплової
конвекції в рідині .
3.2 ЛАЗЕР, ЯК СИСТЕМА, ЩО САМООРГАНИЗУЄТЬСЯ
У другому розділі це питання ми вже розглядали . Тут же, розглянемо просту модель лазера.
Лазер - це пристрій, в якому в процесі випромінювання, що стимулює, породжуються фотони.
Зміна з часом числа фотонів n, або іншими словами, швидкість породження фотонів, визначається рівнянням вигляду :
dn / dt = «Приріст» - «Втрати» (3.2)