Високотемпературні надпровідні схеми інтегральних мікросхем

Розглядаються відносини між Ic поширення в чіп і рівня схеми інтеграції (14,15). Щоб проілюструвати ефект критичного струму користуються схемою виходу, ми вважаємо один перехід входу критичного струму Ic. Крім того, ми передбачаємо, що процес виготовлення дасть переходам, розподіл критичного струму розподіл Гауса з стандартним відхиленням σ.

Вірогідність даного переходу, що входять Δ край надано критичного струмами розподілу Гауса зі стандартним відхиленням:



Критичний струм кожного з'єднання в ланцюзі, що складається з N таких переходів повинен бути між Ic-Δ і Ic+Δ. Сумарний вихід ланцюга буде PN. Рис.9.4 показує, цінність, необхідних у виробництві ланцюгів даного з'єднання (15). Маленький критичний струм розповсюдження досягнутих на сьогоднішній день складає 1σ =8% для 100 спаду краю переходів модифікованим інтерфейсом бар'єр (16). Як показано на рис.4, де критичний струм поширення відповідає прибутковості 50% для схем з кілька сотень вузлів.

Розповсюдження від Rn і IcRn продукт має менше за критичне значення, ніж схема поширення Ic. Крім того, розповсюдження Rn і IcRn продукту, як правило, менше, ніж поширення Ic (17).

 

2.1.2 SFQ Петлі

SFQ схеми містять два види петель SFQ. Одним з них є для зберігання циклу, для якого Ф0 < βl = LIc < 2Ф0. Інша передача циклу для JTL, для яких βL < Ф0. Ці типові значення 1,5 Ф0 і 0,5 Ф0, відповідно. Тут L є індуктивність петлі SFQ і Іс критичний струм переходу у тому циклі.

Індуктивність L надпровідного мікролінійний рядок якого, що розділ представлений на рис.5 дається



де w - ширина лінії, L - довжина лінії, L є надпровідна глибина проникнення поверхнею грунту і лінія, tG і tc товщини поверхні грунту та лінії, відповідно, d є товщина ізоляції шару, µ0 проникність вільного простору, і К окантовка (1). Тому що λL матеріалів HTS більше, ніж матеріали LTS, L на квадратний (L) значення для HTS мікрополоскових ліній більше, ніж для Nb мікрополоскових відповідно до тієї ж товщини діелектрика.

Важко викласти невелику петлю L з-за великого значення L. Більше того, ми пояснимо докладно в розділі 9.3.2.1., Ic не може бути зменшений занадто багато через тепловий шум. Труднощі рішення менших βL петля є однією з найсерйозніших проблем в HTS схеми SFQ.

 

2.1.3 Опір

Три види опору необхідні в чіпі HTS SFQ. Опір менше кілька Ом розміщуються в деяких в SFQ. Деякі SFQ виходи не мають потреби в цих малих опорах, але деякі використовуються для затухання опору (6) і Сигма-дельта модулятор, який використовується для основної частини свого роду аналого - цифровий трансформатор, є необхідними для опору.

Надпровідникові

дроти








                                     



Рис.5. Поперечний переріз надпровідних мікрополоскових прямих над надпровідної заземленою поверхнею.


Опір використовуватися для розділення струму зміщення в кожному циклі SFQ паралельно має значення кілька десятків Ом. Цей опір, необхідний для запобігання несправних операцій, викликаних поточним відображенням з інших включених переходів. Третій вид опору відповідні опору у високошвидкісних I / O лінії. Він необхідний для повного опору на 50-Ω зовнішньої сигнальної лінії.


2.2 Фактори, що обмежують HTS SFQ ланцюгових операцій

 

2.2.1 Теплові шуми

На жаль, цифрових схем на основі Nb необхідно охолоджувати до температури рідкого гелію. Використання матеріалів HTS дозволить скоротити витрати на охолодження, а також підвищення робочих частот з-за більш високого IcRn HTS Джозефсонівських контактів, але більш висока робоча температура призводить до більш теплового шуму. Енергетичний бар'єр між двома станами потоку на виході SFQ є дуже низьким. Груба оцінка (18) показує, що для типового критичного струму близького до 10-4 А, цей енергетичний бар'єр близький до 10-1J. Таким чином, на деякі коливання, не враховуються оцінки на виході, описаних у попередньому розділі, можуть збільшити спонтанного перемикання потоку. Ймовірність виходу SFQ, викликані тепловим шумом були досліджено теоретично й експериментально.

Збалансованого компаратора з допомогою двох переходів (рис.9.6) є основним компонентом з RSFQ логічних вентилів і SFQ підрахунку аналого-цифровий перетворювач (6). Державний університет Нью-Йорку група (18-21) досліджували вплив теплових шумів на виході SFQ теоретично на основі аналізу діяльності збалансованого порівняння. Коли на зовнішні виходи драйвер посилає імпульс SFQ збалансованому


 

Рис.6. Еквівалентна схема збалансованого компаратора.


компаратору, один з вузлів вимикання. Який переключає з'єднання шляхом додаткового поточного Ix подається в центральний вузол пристрою. J2 вимикачі коли Ix>0 і J1 вимикачів, коли Ix <0. Однак неминучим створенням коливань, сірі зони навколо Ix =0, де кожен з вузлів, має ймовірність 0 < P (Ix) < 1 бути включеним. Ефективна ширина ΔIx цього сірі зони, які визначається як ΔIx= (dp/dIx) - 1| p=1/2, зменшує параметр кулуарів RSFQ логічних елементів. Результати цієї теорії є приблизно такими:



де It = (2e/ћ) kBT ≈ (0.042 µA) * T (K) і Т є температура. У теплових межах коливань, ћ (kωс) 1/2 << kBT.



В іншому випадку, квантова межа, темпи залежності відрізняється,



і тепловий потік групи, якій замінюється поточною квантовою одиницею IQ = (2e/ћ) eIcRn. Без обліку теплової та квантових флуктуацій, збалансований компаратор працює зазвичай 0 < Ix/Ic < 1. Операції різниці стають вузькими в результаті коливань. Операція детермінованих полів показана на рис.9.4 повинна бути переглянута з урахуванням цих шумів.

Сетчел (22) і Джеффрі та ін. (23) імітованих коефіцієнтів помилкових бітів (BER) різних SFQ воріт, і їхні результати знаходяться в добрі згоді з теоретичними передбаченнями.

Сетчел дійшов до висновку, що для роботи при температурах вище 40 К можлива тільки для тих схем, які мають добру перенесеність шуму, і Джефрі уклав що провал транспортного переключення (Т-FF) робоча температура повинна бути не нижче 40 К в порядку похибки менше 10 ГГц на 10-6 швидкостей.

Вивчено вплив теплових шумів на збалансований компаратор з бікрісталом джозефсонівських експериментів (24), і співвідношення між струмом зміщення та Δix виміряні при 40 К показана на малюнку 9.7. ΔIx / Ic відношення з різними умовами упередженості оцінюється від 6% до 17%. Статична помилка відбувається, коли петля SFQ втрачає зберігання кванта потоку з-за теплового шуму і статичний коефіцієнт помилок петлі SFQ зберігання виготовлений з HTS бікрісталом джозефсонівських переходів вимірювали Чонг та ін. (25). Конфігурації стека двох HTS DC SQUIDs використана в цьому експерименті, одна виступає як сховише петлі для квантів потоку та інші, що виступає в якості зчитування потоку стану зберігання SQUID. Стабільні вимірювання часу для обох “+I" і “-I" SFQ в зберіганні циклу поблизу порога струму зміщення показані на рис.8. зменшення близько 6-7µA струму зсуву збільшиться стабільний час одного порядку.


Рис.7. Залежність Ix та струму зміщення, б.


Неправильне підключення вимикачів на своєму етапі відповідь на вхідний імпульс SFQ (26). Ці динамічні помилки домінуючими.


Рис.8. Вимірюється час стабільним для обох “+1" і “-1”станів поблизу струму зміщення. Суцільні лінії показують результати модельних розрахунків.


Рис.9. Білі квадрати виміряних точок; чорні квадрати відповідно середні значення.


Над практичними схемами RSFQ. Збалансований компаратор, що складається з орієнтованої зони випромінювання опроміненої пучком на переходах використана в цьому експерименті. Рис.9.9 показує, BER залежності від прикладеного струму, який так само, як Ix. Температура у цьому експерименті 39 К і вхідний імпульс SFQ частоти близько 1 ГГц. Були отримані BER менш 10-11, показуючи, що SFQ схема може працювати при 39 К. Їх вимірювання також вказували, що значне полів параметрів схеми повинні бути прийняті до уваги коли температура вище 4,2 К.

Підтримання постійного поля шумів при підвищених температурах Ic значень переходу до збільшення частки до робочої температури і схеми індуктивності для зменшення значень, зберігаючи βL постійною. Довге проникнення в глибину матеріалів HTS, однак, робить такі мало індуктівні значення недоцільними. Крім того, значення Іс, ймовірно, буде обмежено до 0,4 мА. Схеми повинні або бути обмежені порівняно з низькою робочою температурою або працювати з меншою.

Максимальна напруга Vd розділені за RSFQ Т-FF визначає максимальну частоту операції βmax в TFF: βmax =Vd/Ф0. Значення IcRn джозефсонівських переходів в Т-FF і Vd цього Т-FF були зіставлені та їх температурна залежність була розглянута Сайто та ін. (27). Температурні залежності значень IcRn показані на рис.10. Vd ясно менше, ніж значення IcRn, хоча їх температурних залежностей достатньо подібні.


Рис.10. Залежність значення IcRn і напруги Vd.


Максимальна Vd на 15K, ƒmax відповідає 155 ГГц. Оцінка обмеження факторів, що визначаються як ƒmax = γIcRn/Ф0, становить 0,4 > γ >0,1 для 15 K < Т < 27 К. Передбачається, що тепловий шум впливає на Т-FF операції, і вони включають такі теплові шуми в їх моделювання схеми. Результати моделювання і експериментальні результати, погоджені досить добре. Ці результати показують, що тепловий шум впливає на Т-FF логіку функціонування і пригнічує максимальні частоти. Вони припустили, що джозефсонівські контакти, для яких IcRn більше, ніж 1 мВ необхідні, щоб операція по швидкостях понад 100 ГГц і повинні бути отримані на 30 К.

 

2.2.2 Паразитична Індуктивність

Паразитарна індуктивність неминуча в практичному організаційному макеті джозефсонівських переходах і контактах в SFQ цифрових схем. Лінія індуктивності в ланцюгах є HTS вдвічі більша, ніж в схемах LTS. Крім того, дрібні елементи індуктивності HTS використовувалися в схемах з підтримкою βl их Ic. Таким чином, більш серйозна проблема для HTS схеми SFQ ніж LTS схем.

Сатчел (22) і Джефрі (23) імітували паразитний вплив індуктивності до схеми виходу, а також теплового шуму. На рис.11, моделювання за результатами Jeferry, в якому дало результати для Т-FF SFQ з різними умовами та експлуатацією частот описані з (рис.11а). Ці результати показують, що кількісна паразитична індуктивність може мати значний вплив на ймовірність отримання HTS SFQ схема працює на надвисоких швидкостях.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать