Рис.11. Монте-Карло дають результати для Т-FF (а) і (б) без паразитичних індуктивностей.
Значення цієї паразитичної індуктивності достатньо велике, щоб скоротити операційний семплер ланцюга.
2.3 Виготовлення SFQ схем
2.3.1 Матеріали
Надпровідник, який найбільш широко використовується в HTS цифрових схемах Yba2Cu3Ox (YBCO). YBCO плівки можуть бути вирощені: SrTiO3 (STO), MgO, LaAlO3, NdGaO3, YSZ (стабілізований оксидом ітрію діоксиду цирконію), Sr2AlTaO6 (СБ), Sr 2AlNbO6 (SAN), і (La0.3Sr0.7) (Al0.65Ta0.35) Ox (останній). Серед них, СТО досі найбільш популярний матеріал підкладки для SFQ цифрових схем, оскільки його постійна решітки і коефіцієнт теплового розширення є близькі до YBCO. Вибір надпровідників у підкладці обмежує вибір ізоляторів. Вкрай бажано, що ізолятор може бути виготовлено з використанням тих же матеріалів, які використовується для депозитів YBCO і при температурі не набагато вище. Очевидним вибором для ізоляторів є субстрати матеріалів. Існують шари MgO, LaAlO3, NdGaO3,SAN. Опір цих матеріалів є достатньо високим для цифрового ланцюга.
Серед них, Pd / Au був з набагато меншим температурним коефіцієнтом опору, особливо при низькій температурі, ніж Pd. Поверхневий опір 400-нм Pd / Au. Було близько 0.6Ω від 4.2 К до 77 К. Вони припустили, що Pd / Au є найбільш підходящим матеріалом для схем SFQ. Форрестер та ін. Au використовуватися для резисторів з адгезією Ti шар в Sigma дельта модулятор (31) і Мо був використаний для 1 - Ω резистора Міллер та ін. (32). Контактний опір між цими резистора і шару YBCO є небажано великим у порівнянні з опором листа, тому важливо, що будуть досліджені способи зниження опору контакту.
2.3.2 Джозефсонівські переходи
З різних видів джозефсонівських ступенів розвитку, EDGE-тип переходів (34), схематично показано на рис.12а, як видається, є найбільш перспективними для цифрової схеми через свої невеликі розміри, потенційна керованість переходу критичного струму і перехід значень опору, і простота надпровідних проводів.
Рис. 12 Схема перетину HTS джозефсонівських переходів.
Сато та ін. Розробив на місці крайній підготовки до рампи PbCO-сходження ребер і набув поширення Ic 1σ=10% за 12 переходів з продуктом IcRn 2 мВ при 4,2 К (35). Co-легованих YBCO діє як бар'єр при температурі вище 50 К і 20-рампа сходження ребер з співголовами легованих бар'єрів, які зроблені Малісоном та ін. Був продуктом IcRn 0,3 мВ при 50 К і показав Ic поширення 12% (1) (36). Інші краї перехрестя з Co-легованого бар'єр YBCO, база якого містить електроди YBCO 5% La, виставлена IcRn продукти 0.5 - 0.8 мВ при 65 К з 1σ Iс що поширюється вниз до 12%, повідомив Хант та ін. (13). Було встановлено, що Ga допінгу, Rn систематично збільшився, а Ic залишився незмінним. Ванговен та ін. Доказали, що шляхом легування Ga, IcRn продукція була збільшена до 8 мВ при 4,2 К (12).
Інтерфейс інженерії рамп-сходження ребер (IEJ), розроблена Moeckly та ін. (37) привертають велику увагу, тому що відтворений виготовлення цілком підходить для додатків цифрової схеми. У цьому процесі осадження бар'єр формується тільки шляхом структурної зміни за допомогою іонного бомбардування і вакуумного відпалу. Зміни, в якому був сформований нормальний фрезерних іон. Їх зміна пов'язана в переходах (MIJ) також показала, відтворення lc з 1σ поширення в lc складає менше 8% на 100 контактів (16).
Недоліком використання рамп-сходження ребер в ланцюгах SFQ є те, що буде важко зменшити петлю індуктивності. Один зі способів зменшити індуктивність SFQ циклу за допомогою вертикальної структури. Вертикальна петля може бути побудована за допомогою Stacked переходів (рис.12b) і з віссю Microbridge (CAM) в переходах (рис.12c). Як і конфігурація Stacked переходів, що й у Nb / Alox / Nb переходах, які використовуються в схемах LTS SFQ, розвиток Stacked переходів для HTS схеми SFQ довелось чекати від першого етапу HTS перехід розвитку. Нещодавно Stacked з продуктом IcRn 2,1 мВ і 10% lσ поширив ІМС на 4,2 K. Ці характеристики подібні від краю рампи перехрестя і є перспективними у зв’язку з SFQ схем застосування.
CAM є просто надпровідною структурою без навмисного формування бар’єру слабкого зв’язку. З’єднання між двома шарами YBCO. Це поєднання має IcRn продукт, як великий 1,2 мВ при 60 К. Однак, оскільки критичного струму в звичайних (2 -μм-діаметр) CAM технології занадто високі. CAM діаметр 0,5 м потрібно для цілей критичного струму 0,5 мА на 40 - 60 К (39). Здається, що для досягнення гарної однорідності Ic буде важко завдяки своїй невеликій території.
Крок від краю межі (SEGB) вузлів, які утворюють розриви в кристалічній орієнтації, охоплює HTS крок у підкладці (рис.12d), більш легко інтегруються в мультислоях ніж рампа-сходження ребер (32,40). Орієнтовані-електронно-променево-опроміненні (ОЕПО) переходи на одному шарі YBCO визначаються шляхом опромінення краю з високими дозами електронів, що робить їх чисто резистивними. Таким чином, була можливість для точного визначення різних критичних струмів для переходу ОЕПО (41). ОЕПО переходи не підходять для використання у великих масштабах схеми, оскільки занадто багато опромінення часу потрібно для прийняття кожного переходу. Кілька HTS цифрових схем виготовлені з використанням зернограничних переходів, які виготовляються шляхом здачі на зберігання епітаксіального YBCO на бікристалі підкладки (42), тому що вони мають порівняно великі IcRn. Використання бікристаллом зернограничних переходів обмежені в невеликих масштабах.
З метою реалізації високопродуктивних HTS SFQ схем, розробка схеми процесу, якої інтегрує відтворення джозефсонівських в епітаксіальних мультислоях має важливе значення. Зокрема, надпровідність землі індуктивність коливального контуру потрібно тримати досить низькими, щоб імпульс SFQ міг генерувати достатній струм у навантаження і індуктор βL в циклі SFQ можуть бути розроблені в рамках діапазону.
Першим на доповідь виготовлення переходів над SEGB землі був Missert (43). Цей пристрій діє як SQUID тільки до 20 К. Операції температури SQUID, яка складалася з переходів SEGB з 200k землі збільшена до 77К вище, Форестер та ін. (44). Вони виміряли температурну залежність L і знайшли її в добрій згоді з теорією, згідно з якою температурна залежність проникнення представляє глибини, використовуючи формулу Казимира, λ (t) = λ0/ [1- (T/Tc) 4] 1/2, де λ0 це глибина проникнення при Т = 0.
Рамп-сходження ребер з 450-нм. SQUID звернення працюють на температурах до 50 K, на використані товщі землі під площину робить поверхню бази електрода YBCO грубішою, в результаті чого появляється надлишковий струм в рампі-сходження ребер.
Co-легованих YBCO / YBCO переходах більше 200 нм YBCO площині. Обидва шаруватої структури, окрім тієї ж, що Аль Хант ET. Використовували La-легованого YBCO за базовий Mallison електрод і ін. SAN використовували для ізолятора. Хант та ін. Повідомили L□ 1,0 рН і великим IcRn продукти 0.5 - 0.8 мВ при 65 К. Mallison повідомив L□ 1,2 рН при 70 К. Ці заходи індуктивностей є досить низькими, щоб почати Highspeed
Тести малого масштабу схеми, навіть нижче, індуктивності L□ = 0,8 рН. Як і в структурі, показаній на рис.13, базовий електрод YBCO в структурі виступає як YBCO. Таким чином, ця структура не вимагає додаткові площини землі. Така ж структура використана в роботах.
CAM технології, які використовуються природним наслідком низької індуктивності:
Рис.13 Креслення DC SQUID
Рис.14 Схематичний перетин YBCO / PbCO / YBCO. Рампа краю переходу інтегрована з верхньою площиною землі "HUG структури".
Описані вище літаки землею поховані під переходах, і Товщина поховали літаки земля була бути нижче 200 нм, оскільки товщі землі привели в літаках більше шорсткість поверхні, що дозволило знизити якість з’єднання. Кожен шар YBCO структури HUG було перевірено на тісні поточні щільності до рівня asgrown YBCO плівки. Опір тришарових по 400-нм плівка товщиною STO виміряна більше 1 мΩ в діапазоні від 4.2 К до 300 К на площі 100*100 μm, що є достатнім для автоматичних операцій. Високотемпературні процеси використані у формуванні площини грунту не впливають на якість з'єднання, такі як IcRn продукти та надлишковий струм. Структура температурних залежностей може бути встановлена шляхом полосковою моделлю. Ця модель дещо відрізняється від Кортер-Казимира форми, λ (t) = λ0/ [1- (T/Tc) 2] 1-2.
2.4 Елементарні RSFQ схеми
Кілька простих схем RSFQ виготовлені і випробувані на низьких частотах у порядку для перевірки основних операцій SFQ зберігання потоку і перевірки застосовності конкретного виготовлення.
Першим продемонстрував роботу схеми HTS SFQ Іванов (50), який продемонстрував роботу схеми, що складається з усічених скидань - набір (RF) фліп-флоп (FF) (без переходу в буфер скидання каналу) доповнюються за необхідних вхідних і вихідних ланцюгів, використовуючи граничні переходи в YBCO тонкої плівки. Використання LTS (свинцевого сплаву) в площині землі, має обмежену схему операції до 4,2 К.
Форрестер та ін. Повідомили про два простих етапи зрушення з магнітним READ поєднанні SQUID, як показано на рис.16a (51). Ця схема одноярусна YBCO з п'ятьма SEGB переходами. Рисунок показує, що 16b - зсув резистора завантажений і Shifted SFQ дані по команді на 65 К. Відзначимо, що існує помилка близько 130 х років, коли потік квантово зміщується у відсутності зсуву команди. Хоча ефективність зв'язку між читанням SQUID і першими даними SQUID були лише близько 4%, як зберігання та їх SFQ руху у відповідь на сигнали застосовуються в ланцюзі HTS.
RSFQ серія, яка включає два DC / SFQ перетворювачі, два JTLs, повна
RS-FF, і SFQ / DC перетворювача, було реалізовано в площині джозефсонівських переходах утворена FEBI. Низькочастотні тестування показали, що це DC схемою працює надійно на 30 К, на кілька градусів нижче ефективної критичної температури переходу. Тризмінному розряді SFQ що складається з регістра зсуву, DC / SFQ, одного зчитування SQUID, яке виступає в якості SFQ / DC конвертор, і три JTLs (Рис.17) Схема складається з 26 бікристалів Джозефсонівських контактів, що є найбільшим числом в будь-якій розвиненій схемі HTS до теперішнього часу, і належного функціонування всіх компонентів схеми була підтверджена низькою частотою тестування на 50 К. оперативної схеми.3% для годинника поточних і 5% для струму зміщення в регістр зсуву.
Рис.16 Схема для двох етапів зареєстрованих зрушень і (б) зміна реєстрація завантаження і Shifted SFQ даних по команді на 65 К. Зверніть увагу на помилку в 130 С.