Взаимодействие бета-частиц с веществом

Неупругие процессы при взаимодействии электрона с ядром связаны с испусканием электромагнитного излучения, возникаю­щего при ускорении электрона в кулоновском поле ядра. Рожден­ное в таком процессе -излучение является тормозным. Потеря энергии электрона на тормозное излучение называется радиаци­онной. Согласно Гейтлеру радиационные потери на единице дли­ны равны

(6)

Вероятность образования тормозного излучения пропорцио­нальна квадрату заряда ядра, поэтому радиационные потери энергии играет большую роль в тяжелых элементах. Излучение является важным механизмом потери энергии электронами, но этот механизм несущественен для более тяжелых частиц (мезо­нов, протонов и др.).

Сравнение формул для потерь энергии на излучение и на ионизацию показывает, что потери энергии имеет разный ха­рактер. Так, потери энергии на излучение пропорциональны Z2 и увеличиваются с энергией линейно, в то время как потери на ионизацию пропорциональны Z и увеличиваются с энергией лишь логарифмически. Поэтому при больших энергиях падаю­щих электронов преобладают потери на излучение. С уменьше­нием энергии электрона роль ионизации (и возбуждения) увели­чивается. При энергии (МэВ) оба вида потери энер­гии имеют примерно равную вероятность. Отметим, что для А1 (Z—13) 46 МэВ. Для электронов, испускаемых при радио­активном распаде, радиационные потери в общем балансе поте­ри играют незначительную роль, так как значения энергии бета-распада обычно не превышают 5 МэВ.

Все сказанное выше применимо и для позитронов. Надо за­метить, что проникающая способность позитронов немного отли­чается от проникающей способности электронов той же энергии ввиду того, что позитроны и электроны несколько по-разному рассеивается в поле ядра. Вызванное этим обстоятельством раз­личие в поведении данных частиц не является существенным.


Детектирование.


Основным принципом детектирования электронов является регистрация ионов, образующихся в результате взаимодействия электронов с веществом детектора. К таким детекторам относят­ся газонаполненные и твердотельные детекторы.

Так как число нар ионов, создаваемых при движении элек­тронов в веществе детектора, сравнительно невелико, то более эффективными газонаполненными детекторами являются счет­чики с газовым усилением (счетчики Гейгера-Мюллера и про­порциональные счетчики). Большой эффективностью обладают и твердотельные детекторы (сцинтилляторы и полупроводники). Например, при толщине детектирующего слоя 10 мм полупро­водниковые детекторы регистрируют почти со стопроцентной ве­роятностью бета-частицы с энергией до 3 МэВ.

Достоинством пропорциональных счетчиков, сцинтилляционных и полупроводниковых детекторов является возможность по­лучать от этих приборов электрические импульсы, амплитуда ко­торых пропорциональна энергии бета-частицы. Это обстоятель­ство позволяет регистрировать спектры бета-частиц. Из перечис­ленных выше приборов наилучшими спектральными характеристиками обладают полупроводниковые детекторы, на которых по­лучают электронные линии с полушириной ~1 кэВ. Более высо­кой разрешающей способностью (до 1—10 эВ) обладают электро­статические и магнитные спектрометры, но эти приборы весьма сложны, дороги и, как правило, обладают малой светосилой (т.е. регистрируют лишь незначительную часть электронов, испущенных источником). В тех опытах, в которых не требуется знание спектрального распределения электронов, для их регистрации ис­пользуются счетчики Гейгера-Мюллера как наиболее простые и эффективные детекторы. Для измерения спектрального распре­деления бета-частиц используются сцинтилляционные кристаллы и полупроводниковые детекторы. Из других методов детектиро­вания электронов отметим счетчики, регистрирующие черенковское свечение, возникающее при прохождении быстрых электро­нов через вещество, однако эти счетчики наиболее эффективны при больших энергиях электронов.


Определение граничной энергии бета-спектра методом поглощения


Знание максимальной энергии бета-излучения необходимо для решения многих научных и практических задач. Во многих важ­ных случаях периоды полураспада оказываются очень коротки­ми и составляют всего несколько минут или даже секунд. При этом часто приходится иметь дело с препаратами малой интен­сивности. Поэтому необходимы простые и быстрые способы опре­деления максимальной энергии бета-излучения, не требующие к тому же больших активностей. Одним из таких способов являет­ся метод поглощения, которым можно определить максимальную энергию бета-спектра с погрешностью порядка 5—10%. Такая точ­ность часто бывает достаточной при решении прикладных задач. Точнее определить энергию бета-частиц можно с помощью про­порционального счетчика, сцинтилляционного, полупроводнико­вого и магнитного спектрометров.

Принцип метода поглощения заключается в определении про­бега электронов в каком-либо веществе.

Рассмотрим пучок электронов, падающий нормально на по­верхность фильтра (рис. 29). Первоначально быстрые электроны проходят в поглотителе некоторое расстояние приблизительно по прямой линии, теряя небольшие количества энергии и испыты­вая лишь малые отклонения.

По мере уменьшения энер­гий электронов их рассеяние становится более сильным. Уг­ловое распределение электро­нов в пучке начинает прибли­жаться к гауссову, характерно­му для многократного рассея­ния. В этой области наиболее ве­роятный угол рассеяния увели­чивается пропорционально квадратному корню из пройденной толщины фольги. При дальнейшем рассеянии угловое распреде­ление становится настолько размытым, что нельзя говорить о каком-либо преимущественном направлении движения электро­нов, и их распространение можно рассматривать как диффузию.

Число электронов, прошедших через фольгу, есть монотонно убывающая функция толщины фольги. Для умеренных толщин уменьшение числа электронов является следствием, главным об­разом, обратной диффузии электронов, которые отклоняются на углы, превышающие 90°, в результате сложения большого числа отклонений на малые углы. При дальнейшем увеличении толщи­ны фольги уменьшение числа электронов происходит как вслед­ствие рассеяния, так и по причине того, что часть из них тормо­зится практически до нулевой энергии и, таких образом, выбы­вает из пучка. Предельная толщина фольги, практически полно­стью задерживающая первоначально падающие электроны, на­зывается эффективным пробегом электронов. Этот пробег опре­деляется по кривым поглощения.

Так как теоретические расчеты эффективного пробега моно­энергетических электронов в конденсированной среде трудны, приходится обращаться к установлению эмпирического соотно­шения "пробег — энергия" путем измерения пробега моноэнергетических электронов известной энергии.




Рис. 4. Кривые поглощения моноэнергетических электронов разных энергий в алюминии.


Однако при этом возникает трудность экспериментально­го определения пробега по измеренной кривой поглощения. Экспериментально пробег не может быть определен как пре­дельная толщина поглотителя, которую уже не могут пройти первоначально падающие элек­троны, так как различные элек­троны данного пучка рассе­иваются или тормозятся по-разному и такая толщина прак­тически не существует.

На рис. 5 приведены типич­ные кривые поглощения в алю­минии для моноэнергетических электронов различных энергий. По оси абсцисс отложена толщина d алюминиевого фильтра, по оси ординат — интенсивность I пучка электронов, прошедших через фильтр. Каждая кривая имеет после начальной выпуклой части довольно длинную прямо­линейную часть, заканчивающуюся некоторым "хвостом". Наи­более воспроизводимой чертой кривых поглощения, снятых при различных условиях эксперимента является точка пересечения линейной части кривой поглощения с осью абсцисс (экстраполи­рованный пробег,).

Экстраполированный пробег используется для практических целей. Выше 0,8 МэВ связь между пробегом  и энерги­ей электронов может быть выражена линейным соотношением = А + BE, где А и В — константы.

Кривые поглощения в случае бета-излучения, имеющего непрерывный энергетический спектр, отличаются от кривых по­глощения для моноэнергетических электронов более резким, по­чти экспоненциальным спадом. Такой спад объясняется тем, что в пучке бета-частиц имеются электроны всевозможных энергий, в том числе и очень малых, медленные же электроны поглощают­ся весьма сильно. Типичная кривая поглощения бета-излучения приведена на рис. 5а. Как видно, конец кривой поглощения под­ходит к линии фона асимптотически. Такой ход кривой объясня­ется постепенно уменьшающимся в бета-спектре числом быстрых электронов и относительно слабым поглощением электронов мак­симальной энергии. По такой кривой поглощения нельзя произ­вести непосредственное определение пробега.

Рис. 5. Типичная кривая поглощения для случая непрерывного бета-спектра (а), (б) – та же кривая в полулогарифмическом масштабе

Для определения пробега целесообразно построить рассматри­ваемую кривую в полулогарифмическом масштабе (рис. 5б). В этом случае пробег бета-частиц, соответствующий их максимальной энергии, определяется по точке пересечения конца кривой поглощения с линией фона.

Для определения максимальной энергии бета-излучения необ­ходимо иметь кривую "пробег—энергия", такую же, как в слу­чае моноэнергетических электронов. Многие исследователи зани­мались установлением зависимости между максимальным пробегом .

Некоторые простые эмпирические соотношения между энер­гией и максимальным пробегом бета-частиц в алюминии даются уравнениями

Е    =    1,39 R0,6при Е< 0,15 МэВ,                        (7)

Е    =    1,92 R0,725,  при 0,15 МэВ< Е< 0,8 МэВ.      (8)
Е    =    1,85 R + 0,245, при Е> 0,8 МэВ.                  (9)

В формулах (5.7) (5.9) максимальный пробег R дан в грам­мах на квадратный сантиметр (г/см2) алюминиевого фильтра, способного практически полностью поглотить бета-частицы с данной граничной энергией.

На рис.42-43 приведена кривая, связывающая пробег бета-частиц с их максимальной энергией.

Непрерывное энергетическое распределение бета-частиц, ис­пускаемых радиоактивными веществами, и рассеяние электронов при прохождении через вещество приводит к тому, что ослабле­ние пучка бета-частиц, идущих от источника к детектору, носит характер, близкий к экспоненциальному закону

  (10)

где d — толщина фильтра;  — коэффициент ослабления.

Экспоненциальный закон хорошо совпадает с эксперименталь­ной кривой в области средних значений толщины поглотителя. В области малых и больших значений наблюдается заметное от­ступление от экспоненциального закона (см. рис. 5б.) При изме­рениях удобно пользоваться толщиной слоя половинного погло­щения, необходимого для уменьшения вдвое начальной ин­тенсивности бета-излучения. Так как и, то

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать