(11)
Коэффициент ослабления находят по наклону прямолинейного участка кривой поглощения , где угол наклона прямой).
Связь между толщиной слоя алюминия, ослабляющего излучение в раз, и верхней границей бета-спектра была тщательно исследована. На с. 94 приводится номограмма, связывающая толщину слоя половинного поглощения с граничной энергией — спектра.
Обратное рассеяние электронов
При попадании потока электронов на поверхность какого-либо материала часть частиц может отклониться от своего первоначального направления на угол, превышающий 90°. Этот эффект называется обратным рассеянием электронов. Обратное рассеяние электронов используется для решения ряда прикладных задач, например для определения толщины покрытий. Этот же эффект может быть и источником методических погрешностей. Его следует учитывать при проведении физических экспериментов с электронными пучками. Например, при вылете бета-частиц из радиоактивного источника распределение бета-частиц искажается из-за их рассеяния в материале подложки, в результате чего увеличивается число частиц, вылетающих в сторону счетчика и, следовательно, увеличивается скорость счета. Другой пример:
при измерении бета-спектров полупроводниковыми или сцинтилляционными детекторами из-за эффекта обратного рассеяния на поверхности детектора происходит обогащение низкоэнергетической части спектра.
Коэффициент обратного рассеяния
Введем величину, характеризующую явление обратного рассеяния коэффициент обратного рассеяния
(12)
где — число частиц, падающих нормально на поверхность материала; — число частиц, рассеянных материалом на угол >90°. Коэффициент обратного рассеяния является функцией атомного номера Z отражателя, толщины отражателя d и энергии падающих электронов Е (а в случае непрерывного спектра бета-частиц — функцией максимальной энергии Емакс), т. е.
(13)
На рис. 32 приведена типичная экспериментальная зависимость q(Z) в случае отражения бета-частиц, испущенных радиоактивным препаратом 32Р. Толщины материалов взяты заведомо больше, чем толщины обратного насыщения (см. далее).
Экспериментальная кривая, показанная на рис. 32, удовлетворяет аналитической зависимости , где В — коэффициент, зависящий от геометрических условий опыта, в частности от телесного угла окна счетчика. Здесь следует отметить, что обратно рассеянное излучение неизотропно — его максимальная интенсивность наблюдается в направлении, перпендикулярном плоскости отражателя. Максимальная энергия и максимальный пробег отраженных электронов также зависит от Z. Например, в случае излучателя 32Р
= 0,247 МэВ ,
= 48 мг/см2 .
Если увеличивать толщину отражателя и измерять интенсивность потока обратно рассеянных электронов, то сначала q будет возрастать почти линейно (рис. 33). затем рост замедлится и далее достигнет некоторого предельного значения
Рис. 6. Зависимость коэффициента обратного рассеяния q от атомного номера 2 отражателя
Рис. 7. Зависимость коэффициента обратного рассеяния от толщины отражателя
Рис. 8. Зависимость коэффициента обратного рассеяния от толщины отражателя из различных металлов. Излучатель
Толщина слоя вещества, начиная с которой q не зависит от толщины отражателя, называется толщиной насыщения обратного рассеяния dH.Эта толщина равна примерно 1/5 от максимального пробега бета-частиц данной энергии в данном веществе. Величина q зависит от атомного номера Z и слабо зависит от плотности электронов в веществе. Из рис. 8 видно, что меньше , хотя плотность электронов в платине больше, чем в свинце. Это свидетельствует о том, что рассеяние происходит в основном на атомных ядрах, а не на электронных оболочках атомов.
На рис. 10 схематически изображено обратное рассеяние бета-частиц при разных толщинах рассеивателя. Следует отметить, что обратное рассеяние бета-частиц в отличие от оптического отражения происходит не только на поверхности рассеивателя, но и в его глубине. На схеме действительная картина обратного рассеяния сильно упрощена: показано рассеяние на один и тот же угол и не учтено поглощение бета-частиц веществом.
Рис. 10. Отражение бета-частиц в зависимости от толщины образца
При небольшой толщине рассеивателя большинство электронов проходит сквозь вещество, и лишь небольшое их число рассеивается в обратном направлении. По мере увеличения толщины число обратно рассеянных электронов увеличивается (б, в). Наконец, при d > dH частицы, глубоко проникшие в рассеиватель, уже не выйдут наружу из-за поглощения в нем (г). При дальнейшем увеличении толщины рассеивателя число вышедших из него обратно рассеянных электронов остается постоянным.
Коэффициент обратного рассеяния растет с ростом граничной энергии бета-спектра до энергии 0,6 МэВ, а далее остается практически неизменным. Зависимость коэффициента обратного рассеяния q от максимальной энергии показана на рис. 11.
Явление обратного рассеяния электронов может быть использовано для решения многих прикладных задач:
а) Для определения толщины материалов. В этом случае выгоднее применять источники мягкого бета-излучения. Зависимость коэффициента обратного рассеяния от толщины алюминиевого отражателя для разных бета-источников показана на рис. 12.
б) Для определения толщины покрытий. Эффект обратного рассеяния позволяет измерять толщины покрытия без разрушения изделий и покрытий. Не разрушает изделие микрометрический метод, но он требует жесткого постоянства толщины основания, а также магнитный, но в этом случае покрытие должно обладать магнитными свойствами. Оптическими методами можно определить толщины только прозрачных покрытий. Химический метод связан с разрушением изделия и его точность не превышает 15%. В случае применения эффекта обратного рассеяния атомные номера вещества покрытия и подложки должны различаться, по крайней мере, на две единицы.
Рис.11. Зависимость коэффициента обратного рассеяния от максимальной энергии бета-спектра
Эффект обратного рассеяния позволяет измерять толщины никелевых и хромовых покрытий, покрытий на проволоке и бумаге, светочувствительных слоев и т. д., составов на пленке, лаковых покрытий на металлах, покрытий из драгоценных металлов. При этом все измерения делают бесконтактно, без разрушения изделий и непрерывно.
Обратно-рассеянное бета-излучение чувствительно к составу раствора ионов с высокими атомными номерами (рис. 12). Возможно измерение концентрации одного металла в сплаве с другим. Здесь также необходимо иметь набор эталонов с различной концентрацией компонентов. Поток обратно-рассеянных бета-частиц от смеси веществ и равен
(14)
где и — весовые концентрации компонентов, +=1.
ВЗАИМОДЕЙСТВИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ СО СРЕДОЙ
Ионизационное торможение заряженных частиц. При электромагнитном взаимодействии быстрых заряженных частиц с электронами вещества последние переходят в возбужденное состояние; когда они остаются внутри атома, происходит возбуждение атома, и спектр этих состояний имеет дискретный характер; в тех случаях, когда электроны вырываются из атома, их энергия может иметь любые значения, а атом при этом ионизуется. Увеличение энергии электрона происходит за счет кинетической энергии падающей частицы. В обоих случаях для краткости принято говорить, что энергия летящей частицы убывает вследствие ионизационных потерь.
Рассмотрим взаимодействие тяжелой заряженной частицы с электроном. Такая частица ничтожно отклоняется со своего прямолинейного пути и этим отклонением можно пренебречь. Допустим, что частица с зарядом Ze, массой М и скоростью v пролетает на расстоянии b от электрона, где b — прицельный параметр, или параметр удара (рис. 13). Взаимодействие частицы с электроном приведет к тому, что электрон получит импульс в направлении, перпендикулярном к линии полета частицы
где F – электростатическая сила и - ее составляющая нормальная к линии полета, а t – время полета
|
|
Импульс же, полученный в продольном направлении , как легко видеть, равен нулю, так как продольная компонента силы на пути до точки наибольшего сближения и после нее имеет противоположные знаки.
Если считать, что взаимодействие существенно только на некотором отрезке пути 2b,то время пролета определится как .Кулоновская сила на этом участке по порядку величины ,поэтому импульс, полученный электроном, может быть записан как
(15)
а переданная электрону энергия
(16)
Эту энергию в среднем и теряет заряженная частица.
Чтобы учесть все электроны с данным параметром удара, рассмотрим кольцевой цилиндр, ось которого совпадает с траекторией частицы, а боковая поверхность проходит через точку, где находится электрон (рис. 14).
Если число электронов в 1 вещества равно , то между стенками цилиндров радиусов b и b+db, т. е. в объеме 2πbdb (единичной длины), будет находиться 2πbdb электронов. В результате взаимодействия с ними заряженная частица на длине потеряет энергию
(17)
Для получения полных ионизационных потерь нужно проинтегрировать (16) по всем возможным значениям параметра удара от минимального до максимального, что дает
(18)
Пределы и выбирают из физических соображений по-разному в релятивистском и нерелятивистском случаях. Так как они входят под знак логарифма, то особая точность в их определении не требуется. При классическом рассмотрении значение определяется исходя из максимальной энергии, которая может быть передана электрону в атоме. Такая максимальная энергия передается при лобовом столкновении и равна . Подставив это значение в (16), получим