Взаимодействие бета-частиц с веществом

Учет квантовомеханических эффектов  приводит к  несколько иному выражению

Предел  определяется из энергии связи электрона в ато­ме, ибо при передаче энергии, меньшей характерной энергии воз­буждения атома, возбуждение его вообще не произойдет.

В релятивистском случае нужно учесть, что поле падающей частицы сжимается в направлении движения, а величина Ен увели­чивается в  раз, где = .   Это приводит к тому, что энергия будет передаваться также и более удаленным электронам

где  — средний ионизационный  потенциал атомов поглощающего вещества.

Точный подсчет дает окончательно для ионизационных потерь энергии тяжелой частицей

 (19)


Если через вещество проходит не тяжелая частица, а электрон (Z=l), то формула (19) немного изменится, так как сам электрон будет отклоняться в процессе взаимодействия от своего первона­чального направления и, кроме того, возникнут так называемые обменные эффекты, имеющие квантовую природу.

В этом случае выражение для удельных потерь будет

 (20)


где — кинетическая энергия электрона.

Графически зависимость удельных   ионизационных   потерь от энергии тяжелых частиц имеет вид, показанный на рис. 15. Рас­смотрим физический смысл от­дельных членов выражения (19) и поясним ход кривой.

Рис.   15.   Зависимость   иониза­ционных    потерь    от    энергии для тяжелых частиц

Начальный участок АВ. В этом случае выведенной фор­мулой пользоваться нельзя, так как при малых энергиях импульс налетающей частицы сравним с импульсом орбитального движе­ния электронов. Поэтому траек­торию налетающей частицы в процессе взаимодействия нельзя считать прямолинейной, и, кроме того, эта частица не может передать необходимую для возбуждения атома энергию.

 Участок ВС. Здесь в основном действует закон . По мере увеличения скорости частицы сама сила Fн не меняется, но меняет­ся время, взаимодействия, а следовательно, меняется и импульс силы, и передаваемая энергия.

По мере приближения    к  скорости света уменьшение  становится все более медленным, и при скоростях   величина  принимает минимальное значение; далее наблюдается логарифмический рост потерь.


Участок CD. Слабый подъем обусловлен эффектом лоренцевского сжатия поля, из-за которого энергия передается все более и более далеким электронам (Ен увеличивается в  раз).

Участок DE. При дальнейшем увеличении энергии, когда па­раметр больше расстояний между атомами, рост потерь ограничивается из-за того, что действующая, на далекий электрон сила уменьшена возникающей под действием поля частицы поля­ризацией среды. Эта сила в е раз меньше, чем в пустоте (). На этом участке формула (19) уже несправедлива. С другой стороны, при далеких соударе­ниях возникает новое физическое явление — так называемое излу­чение Вавилова—Черепкова, приводящее к дополнительным поте­рям энергии.

Из формулы (19)  можно сделать основной вывод, что удель­ные потери энергии на ионизацию атомов:

пропорциональны квадрату заряда движущейся частицы (Ze)2,
пропорциональны концентрации электронов в среде ,
являются функцией скорости f(v) и                     )

не зависят от массы налетающей частицы М, т. е.

 (21)

Так как величина удельных ионизационных потерь зависит от скорости и заряда частицы, то при одной и той же энергии удель­ные ионизационные потери для электрона будут во много раз меньше, чем для протона или -частицы. Например, при энергиях порядка нескольких МэВ ионизационные потери электрона пример­но в 10 000 раз меньше, чем у -частиц. Именно поэтому у -частиц и электронов такая различная проникающая способность: -частица в воздухе проходит всего лишь несколько сантиметров, прежде чем замедлится до тепловых скоростей, тогда как путь электрона такой же энергии измеряется десятками метров.

На наблюдении ионизации основан один из самых распрост­раненных методов определения энергии медленных заряженных частиц. Определяется число пар ионов, создаваемых частицей на полном ее пути в веществе, и если известна средняя энергия , необходимая для образования одной пары ионов, то можно найти полную энергию частицы. Для -частицы, например, с энергией

1 МэВ в воздухе  = 35 эВ.        

Простой вид зависимости от параметров частицы и сре­ды позволяет легко пересчитывать ионизационные потери, если нужно перейти к другим частицам и средам. Например, если изве­стны потери на ионизацию протона массы mp как функция его энергии, то в области справедливости формулы (5) величина dE/dx может быть найдена при такой же энергии и для любой другой единично заряженной частицы с массой М путем умноже­ния значения потерь энергии на величину отношения масс М/тр.

Действительно, согласно (17) потери энергии на ионизацию
не зависят от массы частицы, но обратно пропорциональны квад­рату ее скорости. Поэтому при равных энергиях они и будут про­порциональны значениям масс.

В релятивистском случае потери энергии, как уже говорилось, пропорциональны логарифму    квадрата   скорости, и поэтому при одинаковых энергиях различие по массам в 2000 раз меняет иони­зационную способность лишь в два раза.

Подобный пересчет может быть сделан и для падающих час­тиц с другим зарядом.

Пробег заряженных частиц в веществе.


Под пробегом части­цы R в каком-нибудь веществе понимается толщина слоя этого вещества, которую может пройти частица с энергией  до полной остановки, если направление ее движения было перпендикулярно поверхности слоя.

По существу эта величина более или менее определенна лишь для тяжелых частиц, путь которых практически является прямой линией; и по этой причине разброс в величине пробега для частиц одинаковой энергии невелик. У легких частиц, например у электро­нов малых энергий, вероятность рассеяния велика и поэтому поня­тие пути и понятие пробега для них не совпадают. По измеренному пробегу частицы в среде можно определять ее энергию, или, зная зависимость величины пробега от энергии, определять массу час­тицы.

Для данной среды   и   для  частицы    с   зарядом Ze величина  является функцией только скоростей         , а следовательно, у частицы с известной массой функцией только ки­нетической энергии

Зная вид функции , можно найти и полный пробег частицы

   (22)

Для нерелятивистских энергий  можно записать

 (23)

 (24)

Подставив (23) и (24) в (22) и произведя интегрирование, получим

 (25)

Из этого соотношения следует, что:

1) при равных скоростях пробеги заряженных частиц в веществе пропорциональны массам этих частиц и обратно пропорциональны квадратам зарядов:

2) при равных энергиях частиц  их   пробеги обратно пропор­циональны массам:

Пробеги заряженных частиц часто выражают в г/см2.

и пользуются выражением удельных потерь в форме:

Измерять пробеги в г/см2 удобно, потому что удельные ионизационные потери в легких веществах, рассчитанные на г/см2, оди­наковы в разных средах. Действительно, мы видели, что  и, следовательно,

Однако число электронов, содержащихся в 1 см3 вещества, равно

где N0 — число Авогадро, А — атомный вес вещества.

Так как у легких элементов , то в слое любого лег­кого вещества толщиной 1 г/см2 будет содержаться примерно N0/2 электронов:

,

а это означает, что

Для однозарядных релятивистских частиц

 (26)

и слабо убывает с ростом Z вещества.

На основании формулы для пробега частиц (25), примененной к однородному пучку, который    проходит   слой    поглотителя без рассеяния, можно построить зависимость числа частиц, прошедших через поглотитель, от толщины слоя. Эта кривая изображена на рис. 54. Для монохроматического пучка -частиц она удовлетво­рительно совпадает с экспериментом (пунктир).







Рис. 16. Зависимость числа моноэнергетических   частиц,   прошед­ших поглотитель, от его толщины: а — а-частиц; б — электронов


Конечный участок экспериментальной кривой не вертикален, а имеет небольшой на­клон вследствие статистического характера процесса потери энер­гии. Частицы теряют свою энергию в очень большом, но конечном числе отдельных актов. Флуктуации подвержено как число таких актов на единицу длины, так и потери энергии в каждом отдель­ном акте. В соответствии с этим и пробеги -частиц испытывают статистические флуктуации. Однако величина разброса пробегов незначительна и составляет приблизительно 1%  от полного пробега для -частиц с энергией 5 Мэв (масштаб на рис. 4, а не соблюден).

Поэтому по пробегу -частицы можно с хорошей степенью точности определять их энергию. Электроны же испытывают в ве­ществе многократное рассеяние, направление их движения часто меняется и только в наиболее благоприятных случаях электроны проходят максимальное расстояние в поглотителе в направлении, перпендикулярном к его поверхности. Кривая поглощения колли-мированного пучка моноэнергетических электродов имеет вид, от­личный от аналогичной кривой для -частиц (рис. 16,б). Поэтому энергию электронов нельзя определять по пробегу, а надо изме­рять полную ионизацию, произведенную ими в веществе.


Ядерное взаимодействие


Потери энергии за счет ядерного взаимодействия: рассеяния на ядерных силах, ядерных реакций — имеют большое значение только для сильновзаимодействующих (ядерноактивных) частиц, например -мезонов и протонов высокой энергии,  и -излучение, возникающее при радиоактивном распаде практически не испыты­вает ядерных взаимодействий.

Поскольку ядерные силы короткодействующие, частица долж­на приблизиться к ядру на расстояние порядка радиуса ядра R~1012 см. Характерный же параметр удара для ионизационных потерь см. Вероятность тех или иных физических явлений, определяется эффективным сечением . По­этому для взаимодействий, обусловленных ядерными силами, , а для ионизационных потерь ,а их отношение , т. е. только в одном слу­чае из 107—108 столкновений происходит ядерная реакция. Таким образом, ядерная реакция — событие очень редкое даже для частиц высокой энергии.

Однако при каждой ядерной реакции частица теряет значи­тельную часть своей энергии, в то аремя как при столкновении с атомной оболочкой она теряет всего  и таким образом ядерноактивные частицы при прохождении через среду эффективно выбывают из коллимированного пучка за счет процессов поглощения и рассеяния. Подробнее различные ядерные реакции бу­дут рассмотрены в соответствующем раз­деле.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать