Нейрокомпьютеры

Нейрокомпьютеры

Введение

Наряду с развитием персональных ЭВМ, сетей ЭВМ и

высокопроизводительных суперЭВМ традиционной архитектуры в последние годы

существенно повысился интерес к разработке и созданию компьютеров

нетрадиционного типа и, прежде всего, нейрокомпьютеров. Связано это с тем,

что, несмотря на высокую производительность современных суперЭВМ,

приближающуюся к предельно допустимой, все еще остается много практически

важных проблем, для решения которых нужны более мощные и более гибкие

вычислительные средства. Они необходимы для глобального моделирования

процессов в экосистемах, при решении задач нейрофизиологии, искусственного

интеллекта, метеорологии, сейсмологии и т. п. Необходимы они и при

создании систем управления адаптивных интеллектуальных роботов.

Бортовые ЭВМ таких роботов должны воспринимать большие объемы

информации, поступающей от многих параллельно функционирующих датчиков,

эффективно обрабатывать эту информацию и формировать управляющие

воздействия на исполнительные системы в реальном масштабе времени. Более

того, управляющие компьютеры интеллектуальных роботов должны оперативно

решать задачи распознавания образов, самообучения, самооптимизации,

самопрограммирования, т. е. те задачи, которые весьма сложны для

традиционных ЭВМ и суперЭВМ. Поэтому остается актуальной необходимость в

поиске новых подходов к построению высокопроизводительных ЭВМ

нетрадиционной архитектуры. Среди таких подходов центральное место занимает

нейрокомпьютерный подход.

Его суть состоит в разработке принципов построения новых мозгоподобных

архитектур сверхпроизводительных вычислительных систем – нейрокомпьютеров.

Подобно мозгу, такие системы должны обладать глобальным параллелизмом,

самообучением, самооптимизацией, самопрограммированием и другими свойствами

биологических систем. Ожидается, что нейрокомпьютеры в принципе смогут

решить многие из тех проблем, которые сдерживают дальнейшее развитие научно-

технического прогресса.

По современным представлениям нейрокомпьютер (НК) – это система,

предназначенная для организации нейровычислений путем воспроизведения

информационных процессов, протекающих в нейронных сетях мозга. Структурной

единицей НК служит специфический процессор – нейропроцессор (НП),

имитирующий информационное функционирование отдельных нервных клеток –

нейронов. Нейропроцессоры связываются друг с другом в нейроподобные

структуры, имитирующие нейронные сети мозга. По этой причине, чем точнее НП

воспроизводит информационную деятельность нервных клеток, и чем ближе

конфигурации искусственных нейронных сетей к конфигурациям сетей

естественных, тем больше шансов воспроизвести в НК самообучение,

самопрограммирование и другие свойства живых систем.

С точки зрения вычислительной техники, каждый нейропроцессор

представляет собой специализированное процессорное устройство, реализуемое

программным, аппаратным или программно-аппаратным способом. В то же время

это устройство имеет ряд особенностей. Во-первых, НП воспроизводит не

произвольно выбранный набор операций, а только те операции, которые

биологически обусловлены и необходимы для описания процессов переработки

информации в нервных клетках. Во-вторых, при аппаратной реализации

нейропроцессоров они, подобно нейронам мозга, связываются друг с другом

индивидуальными линиями передач последовательных кодов. При большом числе

процессорных элементов такая связь более эффективна, чем связь

нейропроцессоров по общей шине или посредством индивидуальных параллельных

шин.

Эти и другие особенности НП позволяют выделить их в самостоятельный

класс процессорных устройств вычислительной техники.

1. Нервные клетки и их модели

Нервная система (НС) человека и животных является важнейшей

консолидирующей системой организма. Ее основная функция заключается в

поддержании внутренней гармонии организма и в организации его

приспособительной деятельности в изменяющихся условиях внешней среды. НС

имеет клеточную структуру и состоит из клеток – нейронов, сгруппированных в

нейронные ансамбли и сети. Центральным отделом нервной системы является

головной и спинной мозг.

С точки зрения кибернетики мозг представляет собой информационно-

управляющую систему, которая при помощи рецепторов воспринимает информацию

о внешней среде, обрабатывает эту информацию на основе генетической

программы и индивидуального опыта, а также формирует управляющие

воздействия на эффекторные (исполнительные) системы организма.

Данной структуре соответствует хорошо известная специализация нервных

клеток на сенсорные (рецепторные), вставочные (интернейроны) и эффекторные

(мотонейроны) нейроны. Рецепторные нейроны воспринимают энергетические

воздействия внешней среды той или иной модальности (световые, акустические,

тактильные и т. п.) и преобразуют их в импульсные потоки, передаваемые

интернейронам. Взаимодействующие друг с другом интернейроны осуществляют

обработку поступившей информации, а мотонейроны передают результаты этой

обработки непосредственно на исполнительные системы организма (мышцы,

сосуды, железы внутренней секреции и т. п.).

По форме нервные клетки существенно отличаются друг от друга, однако

большинство нейронов имеет древовидную структуру, состоящую из компактного

тела с рядом отростков (волокон). Короткие ветвящиеся веточки называются

дендритами, а длинный, расщепляющийся на терминальные волокна отросток

называется аксоном. Тело клетки (сома) имеет микроскопические размеры от 5

до 100 микрометров, а длина ее отростков может достигать десятков

сантиметров. Например, у крупных млекопитающих и человека аксоны некоторых

клеток при толщине от 10 до 20 мкм имеют длину до метра. Однако и сома и ее

отростки представляют собой единое целое, покрытое общей оболочкой

(мембраной). Как и любая другая клетка организма, нейрон и его отростки

имеют единую внутриклеточную среду, общий генетический аппарат и общую

систему поддержания жизнедеятельности.

Специфическая особенность нервных клеток заключается в способности

воспринимать, преобразовывать и передавать на другие клетки нервное

возбуждение в виде нервных импульсов. Входные импульсы поступают на

дендриты или сому и оказывают на клетку либо возбуждающее, либо тормозное

воздействие. В те моменты, когда суммарное возбуждение клетки превышает

некоторую характерную для нее критическую величину, называемую порогом, в

области аксона возникают нервные импульсы – спайки или, как их еще

называют, потенциалы действия. Возникнув, спайк бездекрементно (без

затухания) распространяется по аксону, поступает на дендриты других клеток

и вызывает их возбуждение или торможение. Такая связь называется аксо-

дендритной, причем возбуждающий или тормозящий характер воздействия

нервного импульса определяется свойствами контакта двух клеток. Этот

контакт называется синаптическим, а пространство между мембранами

контактирующих клеток называется синаптической щелью.

Количество синаптических входов у отдельного интернейрона достигает

150 тысяч. Поэтому общее число межклеточных контактов очень велико.

Например, в мозге человека при 1011 нейронах количество связей между ними

оценивается астрономическим числом 1014. Если дополнительно учесть, что

синаптические связи имеют электрический и химический характер, что наряду с

аксо-дендритными связями возможны синаптические контакты между дендритами,

сомами и аксонами различных клеток, что каждая связь может быть

возбуждающей или тормозной, а также то, что эффективность синаптических

связей в процессе жизнедеятельности меняется, то грандиозная сложность

нейронных сетей у высокоразвитых животных и человека становится очевидной.

В настоящее время установлено, что мозг, судя по всему, основан на

принципе относительно жестко запаянного блока, состоящего из сложно

организованных нейронных сетей, работающих в миллисекундном диапазоне.

Более детальное изучение этих сетей осложняется специфическими свойствами

нервной ткани, содержащей помимо нервных клеток и другие клетки, которые

поддерживают нейрон механически и участвуют в процессах их метаболизма и

проведения спайков.

В целом, нервная ткань представляет собой бесцветную студенистую

массу, в которой даже под микроскопом трудно различить отдельные нейроны и

состоящие из них сети. Поэтому в современной нейроанатомии применяют

специальные методы окрашивания нервной ткани. В частности, используются

красители, которые избирательно воздействуют лишь на некоторые нейроны и

окрашивают их целиком. Окрашенная таким образом ткань замораживается,

разрезается на тонкие слои и изучается под микроскопом. В процессе изучения

удается выделить отдельные нейроны в сетях плотно упакованных нервных

клеток, волокна которых тесно переплетены в густую чащу с промежутками 0,01

мкм. Более того, удается не только различать отдельные клетки, но и

находить их связи друг с другом, как в локальных областях нервной ткани,

так и в различных, далеко отстоящих друг от друга частях мозга. Однако

получаемые при этом сведения не являются полными и не позволяют делать

однозначных выводов о конфигурациях и законах функционирования изучаемых

нейронных сетей. Эти сведения приходится дополнять данными других

исследований, а именно тех, которыми занимается нейрофизиология.

Основным нейрофизиологическим подходом к исследованию мозга в

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать