Кинематика и динамика поступательного движения

   Возбуждаемые в генераторе колебания подаются на клеммы «Выход». Напряжение на выходе регулируется плавно с помощью ручки «Рег. выхода» и ступенчато (через каждые 10 дБ) при помощи  переключателя аттенюатора, имеющего гравировку «Пределы шкал - ослабление».

   Переключение пределов шкал в зависимости от выходного сопротивления производится переключателем «Вых. сопротивление». При работе с сопротивлением нагрузки значительно больше 600 Ом для правильного отсчета выходного напряжения следует включить внутреннюю нагрузку тумблером «Внутр. Нагрузка».

Теория

Сложение двух взаимно перпендикулярных гармонических колебаний

   Рассмотрим плоское движение материальной точки под действием двух взаимно перпендикулярных квазиупругих сил F1 и F2. В прямоугольной декартовой системе координат x0y, начало которой совпадает с положением равновесия материальной точки, а оси 0x и 0y направлены вдоль линий действия соответственно  силы F1  и силы F2,, уравнения движения имеют вид:

                                                               ,                                                (10.1)

где k1 и k2 – коэффициенты квазиупругих сил F1 и F2. Зависимость координат от времени имеет вид:

,           (10.2)

где  и  - собственные циклические частоты.

   Таким образом, движение точки является результатом сложения двух взаимно перпендикулярных колебаний. Траектория точки заключена внутри прямоугольника, стороны которого параллельны осям 0x и 0y и соответственно равны 2А1 и 2А2, а центр совпадает с точкой 0. В случае рационального отношения частот w1 и w2 траектории замкнуты и называются фигурами Лиссажу. Вид фигур Лиссажу зависит от отношений w2/w1, А2/А1 и разности фаз (j2 - j1) (рис.22) (при неизменном отношении А2/А1).


Отношение частот

Сдвиг фаз

0°

45°

90°

135°

180°

1:1











1:2












2:3












   Отношение частот w2/w1  равно отношению числа касаний фигуры Лиссажу с горизонтальной и вертикальной сторонами прямоугольника, в который он вписывается.

   Если w1=w2, то фигуры Лиссажу имеют форму эллипса:

                               .                               (10.3)

Такие колебания называются эллиптически поляризованными. На рис. 22 в верхней строке показаны частные случаи эллиптически поляризованных колебаний. Если, кроме того A1 = A2 , то траектория точки имеет вид окружности. Такие колебания называются циркулярно поляризованными (поляризованными по кругу). Если (j2 -j1) = kp (k=0; ±1;±2; ...), то эллипс вырождается в отрезок прямой и колебания называются линейно поляризованными.

Сложение колебаний одного направления


   При сложении колебаний одного направления с одинаковой амплитудой А и близкими частотами w и w+Dw (Dw<<w) возникают сложные колебания, называемые биениями. Запишем уравнения колебаний:

                                                                                                         (10.4)

Сложив эти выражения, получим

                                                                                  (10.5)

(во втором множителе пренебрегаем членом Dw/2, который значительно меньше w).

   Движение, описываемое формулой (10.5), можно рассматривать как гармоническое колебание частоты w с переменной амплитудой (рис. 23). Величина амплитуды определяется модулем множителя, стоящего в скобках. Частота пульсаций  амплитуды (частота биений) равна разности частот колебаний, а период биений равен

                                              (10.6)                                                     

 
 
Затухающие колебания

   Затухающими колебаниями называются колебания, энергия которых уменьшается с течением времени вследствие действия на колебательную систему сил сопротивления (трения). Если принять, что сила трения пропорциональна скорости колеблющегося тела , где r – коэффициент трения, то дифференциальное уравнение затухающих колебаний системы имеет вид

            ,           (10.7)                                   

где  - коэффициент затухания,  – частота свободных колебаний системы в отсутствие трения. Коэффициент затухания для данной колебательной системы и данной среды, в которой происходят затухания, является величиной постоянной. Промежуток времени t=1/b, в течение которого амплитуда затухающих колебаний уменьшается в е (2,72) раз, называется временем релаксации.

   Если b<w0 , то система совершает затухающие колебания:

                                                                ,                               (10.8)

где A0 и j0 – постоянные, называемые начальной амплитудой и начальной фазой соответственно, . Величина         

                                                                       А(t)=A0e-bt                                                  (10.9)

называется амплитудой затухающих колебаний и убывает по экспоненциальному закону (рис. 24). Опытная проверка (10.9) сводимая к графическому изображению зависимости А от t, связана с трудностью идентификации («распознавания») закономерности.

Задача упрощается переводом зависимости (10.9) в линейную путем замены переменных. Действительно, прологарифмируем (10.9)

lnA = lnA0 - bt                                                     (10.10)

или                                                           .                                                       (10.11)                                    

   Теперь в координатах ln(A0/А), t получается прямая, изображенная на рис.25. Нетрудно видеть, что угловой коэффициент ее определяется соотношением

                  .              (10.12)

Убывание A принято также характеризовать сравнением амплитуд, достигаемых через интервал t=T, где T= 2p/w – период колебаний. Пусть в момент t амплитуда равна  At , а в момент (t+T)At+T . Отношение

              [D]= 1,          (10.13)                                         

называется декрементом затухания, характеризующим быстроту убывания амплитуды. Более удобен, однако, логарифмический декремент затухания

              d = lnD = bТ, [d] = 1 ,      (10.14)

Величина, обратная логарифмическому декрименту затухания, дает число колебаний, в течении которых амплитуда затухающего колебания уменьшается в е раз. 

Проведение эксперимента

Задание 1. Включение и настройка осциллографа и генератора

1. Перед включением осциллографа устанавливают ручки регулировки: регулятор яркости – в крайнее правое положение (т.е. на максимальную яркость); регулятор фокусировки – в среднее положение; усиление по оси Y – в нулевое положение; усиление по оси Х – в среднее положение; переключатель диапазонов развертки – в положение 30-130. Вилку шнура питания включают в сеть и устанавливают тумблер «Сеть»  в верхнее положение; контрольная лампочка на передней панели должна загореться. Прибор прогревают в течение 2-3 мин. Включают тумблер «Луч», при этом на экране должна появиться яркая линия. Линия может не появляться вследствие слишком большого отклонения луча за пределы экрана трубки. Для возвращения луча постепенно устанавливают регулятор положения луча на оси Y (ручка «Ось Y») в разные позиции и в каждой из них поворачивают регулятор положения луча по оси X (ручка «Ось X»). При нахождении линии уменьшают яркость и регулируют фокусировку до максимально четкого изображения.

2. Соединяют проводником клемму «Контрольный сигнал» с клеммой  «Y-вход», переключатель «Диапазоны частот» – в положение 30-130. Вращением ручек «Частота плавно» и «Амплитуда синхронизации» получают неподвижную картину развертки контрольного сигнала во времени (переключатель «Синхронизация» устанавливают в положение «Сеть» или «Внутр.»). Регуляторами усиления по осям X и Y устанавлива-

ют желаемые размеры изображения. Исследуют влияние различных регуляторов на изображение. Изменяя частоту развертки, получают на экране 1, 2, 3 и т.д. полных колебаний.

3. Вилку шнура генератора ГЗ-33 включают в сеть переменного тока напряжением 220В. Тумблер включения сети ставят в положение «Вкл»,  при этом  должна загореться

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать