, (1.1)
где = – круговая частота, на которой коэффициент усиления транзистора по мощности в режиме двухстороннего согласования равен единице;
– текущая круговая частота.
Формула (1.1) и однонаправленная модель (рис. 1.3) справедливы для области рабочих частот выше [11], где – статический коэффициент передачи тока в схеме с общим эмиттером; – граничная частота коэффициента передачи тока в схеме с общим эмиттером.
Рис. 1.4. Однонаправленная модель полевого транзистора
Значения элементов однонаправленной модели полевого транзистора, представленной на рис. 1.4, могут быть рассчитаны по следующим формулам [1, 11]:
=+;
=+;
=,
где – емкость затвор-исток;
– емкость затвор-сток;
– емкость сток-исток;
– крутизна;
– сопротивление сток-исток;
– сопротивление нагрузки каскада на полевом транзисторе.
Приведенные в данном учебно-методическом пособии соотношения для проектирования входных, выходных и межкаскадных КЦ, цепей фильтрации и согласования широкополосных и полосовых усилителей мощности радиопередающих устройств основаны на использовании приведенных однонаправленных моделей транзисторов.
2. ПРОЕКТИРОВАНИЕ ВЫХОДНЫХ ЦЕПЕЙ КОРРЕКции, согласования и фильтрации
Построение согласующе-фильтрующих устройств радиопередатчиков диапазона метровых и дециметровых волн основано на использовании выходных КЦ, широкополосных трансформаторов импедансов на ферритах, полосовых трансформаторов импедансов, выполненных в виде фильтров нижних частот, фильтрующих устройств, в качестве которых чаще всего используются фильтры Чебышева и Кауэра.
2.1. ВЫХОДНАЯ КОРРЕКТИРУЮЩАЯ ЦЕПЬ ШИРОКОПОЛОСНОГО УСИЛИТЕЛЯ
При проектировании широкополосных передатчиков малой и средней мощности основной целью применения выходной КЦ усилителя этого передатчика является требование реализации постоянной в заданной полосе рабочих частот величины ощущаемого сопротивления нагрузки внутреннего генератора транзистора выходного каскада. Это необходимо для обеспечения идентичности режимов работы транзистора на разных частотах заданного диапазона, что позволяет отдавать в нагрузку не зависимое от частоты требуемое значение выходной мощности.
Поставленная цель достигается включением выходной емкости транзистора (см. рис. 1.3 и 1.4) в фильтр нижних частот, используемый в качестве выходной КЦ [2]. Принципиальная схема усилительного каскада с выходной КЦ приведена на рис. 2.1,а, эквивалентная схема включения выходной КЦ по переменному току – на рис. 2.1,б, где – разделительный конденсатор, – резисторы базового делителя, – резистор термостабилизации, – блокировочный конденсатор, – дроссель, – сопротивление нагрузки, – элементы выходной КЦ, – ощущаемое сопротивление нагрузки внутреннего генератора транзистора выходного каскада.
а) б)
Рис. 2.1
При работе усилителя без выходной КЦ модуль коэффициента отражения || ощущаемого сопротивления нагрузки внутреннего генератора транзистора равен [2]:
|| = , (2.1)
где – текущая круговая частота.
В этом случае относительные потери выходной мощности, обусловленные наличием , составляют величину [2]:
, (2.2)
где - максимальное значение выходной мощности на частоте при условии равенства нулю ;
- максимальное значение выходной мощности на частоте при наличии.
Описанная в [2] методика Фано позволяет при заданных и верхней граничной частоте полосы пропускания разрабатываемого усилителя рассчитать такие значения элементов выходной КЦ и , которые обеспечивают минимально возможную величину максимального значения модуля коэффициента отражения в полосе частот от нуля до . В таблице 2.1 приведены взятые из [2] нормированные значения элементов , , , а также коэффициент, определяющий величину ощущаемого сопротивления нагрузки относительно которого вычисляется .
Истинные значения элементов рассчитываются по формулам:
(2.3)
где = – верхняя круговая частота полосы пропускания усилителя.
Пример 2.1. Рассчитать выходную КЦ для усилительного каскада на транзисторе КТ610А (=4 пФ [13]), при = 50 Ом, =600 МГц. Определить и уменьшение выходной мощности на частоте при использовании КЦ и без нее.
Решение. Найдем нормированное значение : = = = 0,7536. В таблице 2.1 ближайшее значение равно 0,753. Этому значению соответствуют:= 1,0; = 0,966; =0,111; =1,153. После денормирования по формулам (2.3) получим: = 12,8 нГн; = 5,3 пФ; = 43,4 Ом. Используя соотношения (2.1), (2.2) найдем, что при отсутствии выходной КЦ уменьшение выходной мощности на частоте, обусловленное наличием , составляет 1,57 раза, а при ее использовании – 1,025 раза.
Таблица 2.1 – Нормированные значения элементов выходной КЦ
0,1 0,2 0,3 0,4 0,5 |
0,180 0,382 0,547 0,682 0,788 |
0,099 0,195 0,285 0,367 0,443 |
0,000 0,002 0,006 0,013 0,024 |
1,000 1,001 1,002 1,010 1,020 |
0,6 0,7 0,8 0,9 1,0 |
0,865 0,917 0,949 0,963 0,966 |
0,513 0,579 0,642 0,704 0,753 |
0,037 0,053 0,071 0,091 0,111 |
1,036 1,059 1,086 1,117 1,153 |
1,1 1,2 1,3 1,4 1,5 |
0,958 0,944 0.927 0,904 0,882 |
0,823 0,881 0,940 0,998 1,056 |
0,131 0,153 0,174 0,195 0,215 |
1,193 1,238 1,284 1,332 1,383 |
1,6 1,7 1,8 1,9 |
0,858 0,833 0,808 0,783 |
1,115 1,173 1,233 1,292 |
0,235 0,255 0,273 0,292 |
1,437 1,490 1,548 1,605 |
2.2. ВЫХОДНОЙ СОГЛАСУЮЩИЙ ТРАНСФОРМАТОР ШИРОКОПОЛОСНОГО УСИЛИТЕЛЯ
При проектировании широкополосных передатчиков средней и большой мощности одной из основных является задача максимального использования транзистора выходного каскада усилителя по выходной мощности. Оптимальное сопротивление нагрузки мощного транзистора, на которое он отдает максимальную мощность, составляет единицы ом [2]. Поэтому между выходным каскадом и нагрузкой усилителя включается трансформатор импедансов, реализуемый, как правило, на ферритовых сердечниках и длинных линиях [1–4, 14]. Принципиальная схема усилительного каскада с трансформатором импедансов, имеющим коэффициент трансформации сопротивления 1:4, приведена на рис. 2.2,а, эквивалентная схема по переменному току – на рис. 2.2,б, где – конденсатор фильтра; – трансформатор; , – элементы схемы активной коллекторной термостабилизации [15]; – транзистор выходного каскада усилителя. На рис. 2.2,в приведен пример использования трансформатора с коэффициентом трансформации 1:9.
б)
а) в)
Рис. 2.2
Согласно [16, 17] при заданном значении нижней граничной частоты полосы пропускания разрабатываемого усилителя требуемое число витков длинных линий, наматываемых на ферритовые сердечники трансформатора, определяется выражением:
, (2.4)
где d – диаметр сердечника в сантиметрах;
N – количество длинных линий трансформатора;
– относительная магнитная проницаемость материала сердечника;
S – площадь поперечного сечения сердечника в квадратных сантиметрах.
Значение коэффициента перекрытия частотного диапазона трансформирующих и суммирующих устройств на ферритовых сердечниках и длинных линиях лежит в пределах 2·104...8·104 [16, 17]. Поэтому, приняв коэффициент перекрытия равным 5·104, верхняя граничная частота полосы пропускания трансформатора может быть определена из соотношения:
(2.5)
При расчетах трансформаторов импедансов по соотношениям (2.4) и (2.5) следует учитывать, что реализация более 1 ГГц технически трудно осуществима из-за влияния паразитных параметров трансформаторов на его характеристики [3].
Требуемое волновое сопротивление длинных линий разрабатываемого трансформатора рассчитывается по формуле [16, 17]:
. (2.6)
Методика изготовления длинных линий с заданным волновым сопротивлением описана в [18].
Входное сопротивление трансформатора, разработанного с учетом (2.4) – (2.6), равно:
. (2.7)
Пример 2.2. Рассчитать , , трансформатора на ферритовых сердечниках и длинных линиях с коэффициентом трансформации сопротивления 1:9, если = 50 Ом, = 5 кГц.
Решение. В качестве ферритовых
сердечников трансформатора выберем кольца марки М2000НМ 20х10х5,имеющих
параметры: =
2000; d = 6 см; S = 0,5 см2. Из (2.5) –
(2.7) определим: N = 3, = 16,7 Ом, = 250 МГц. Теперь по известным
параметрам кольца из (2.4) найдем: n=16,7. То есть для создания трансформатора импедансов с = 5 кГц необходимо на
каждом ферритовом кольце намотать не менее 17 витков. Длина одного витка
длинной линии, намотанной на ферритовое кольцо, равна 3 см. Умножая это
значение на 17, получим, что минимальная длина длинных линий должна быть не
менее 51 см. С учетом необходимости соединения длинных линий между собой, с
нагрузкой и выходом усилителя, следует длину каждой длинной линии увеличить на
2...3 см.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10