Разработка интегральных микросхем
Введение
Существуют несколько разновидностей технологического изготовления интегральных микросхем (ИМС).
Гибридная технология – характеризуется тем, что пассивные элементы изготавливаются методом пленочной технологии. Основой является изоляционная пластина, на которую наносят резистивные изоляционные и проводниковые пленки. В результате получается конструкция в которой в качестве активных элементов используются бескорпусные диоды и транзисторы.
Тонкие пленки наносят методом вакуумного напыления либо другим методом. Толстые пленки наносят методом шелкографии, когда на нужные места подожки наносят обжигаемый слой пасты.
Недостаток: пониженная по сравнению с другими видами ИС плотность упаковки.
Преимущество: простота разработки и наладки новых функциональных схем (применяют для изготовления схем частного применения).
Гибридные ИС обладают рядом специфических особенностей, главная из которых является наличие навесных компонентов. Это связано с невозможностью промышленного изготовления пленочных транзисторов и прочих активных элементов. В ГИС реализуют высокие номиналы резисторов и конденсаторов, возможна их точная подгонка, что необходимо в измерительной и преобразовательной технике. Трудоемкость разработки ГИС значительно меньше, чем полупроводниковых ИС, технологическое оборудование для производства тонкопленочных структур, И особенно толстопленочных ИС дешевле.
Пленочная технология – характеризуется созданием пленочной ИС, имеющей подложку из диэлектрика (стекло, керамика и др.). Пассивные элементы (резисторы, конденсаторы, катушки) и соединения между элементами, выполняются в виде различных пленок, нанесенных на подложку. Активные элементы не делаются пленочными, так не удалось добиться их хорошего качества. Таким образом, пленочные ИС содержат только пассивные элементы и представляют собой RC – цепи или какие либо другие схемы. Принято различать ИС тонкопленочные, у которых толщина пленок не более 2 мкм, и толстопленочные, у которых толщина пленок значительно больше. Подложки представляют собой диэлектрические пластины толщиной 0.5-1.0 мм, тщательно отшлифованные и отполированные.
Совмещенная технология – обладает преимуществом каждой из рассмотренных технологий и исключает свойственные им недостатки. Конструктивной основой является полупроводниковый кристалл в объеме которого формируются все активные элементы (транзисторы, диоды), пассивные элементы создаются методом вакуумного напыления пленок. Изолирующие области получают путем использования пленок SiO2 или с помощью p-n переходов.
Недостаток заключается в необходимости сочетания двух типов технологических процессов: диффузии примеси (активных элементов) и напыления для пассивных элементов, что приводит к возрастанию цены на изготовление ИС. Однако совмещенная технология позволяет получить высокую степень интеграции и представляет возможность выбора параметров пассивных элементов в широких пределах.
Полупроводниковая технология – характеризуется тем, что как активные, так и пассивные элементы схем выполняются внутри объема полупроводника, который и является основой интегральной схемы (ИС). Основным полупроводниковым материалом является кремний, который обладает рядом ценных свойств и за большей, чем у германия ширины запрещенной зоны позволяет получить активные элементы с меньшими обратными токами. Кремневые транзисторы обладают более высоким порогом отпирания, что повышает помехоустойчивость аналоговых и цифровых ИС.
Простота получения изолирующей поверхности достигается путем окисления исходной кремниевой пластинки и образование пленки двуокиси кремния. Эта пленка используется в качестве маски при проведении диффузии в отдельных областях кристалла, а также для создания изоляции между отдельными элементами схемы. Полупроводниковые ИС обеспечивают высокую степень интегрирования.
Стоимость элементов микросхемы, выполненной в интегральном исполнении по полупроводниковой технологии, в значительной степени определяется площадью, занимаемой ими на полупроводниковой пластине.
Номиналы элементов, имеющих дискретные прототипы, ограничены. Практически нецелесообразно использовать для массового производства ИС “чистые” резисторы с номиналом выше 50 кОм. Конденсаторы с емкостью, превышающей несколько сотен пикофарад, приходится применять в виде отдельных навесных элементов. Желаемые номиналы резисторов не могут иметь малые допуски, хотя отношение сопротивлений одинаковых по форме резисторов на одной пластине можно выдержать довольно точно (1…2%), причем их температурная зависимость будет одинакова. Все элементы полупроводниковой структуры связаны между собой паразитными емкостями и проводимостями, что обусловлено плотной упаковкой и несовершенством методов изоляции элементов.
Преимущества полупроводниковых ИМС перед гибридными таковы:
1. Более высокая надёжность вследствие меньшего числа контактных соединений, ограниченного количества используемых материалов, а также из-за того, что полупроводниковую ИМС можно изготовить только из монокристаллической, сверхчистой, полупроводниковой структуры;
2. Большая механическая прочность в результате меньших (примерно на порядок) размеров элементов;
3. Меньшая себестоимость изготовления полупроводниковых ИМС вследствие более эффективного использования преимуществ групповой технологии
В полупроводниковых ИС в качестве активных элементов могут использоваться биполярные и униполярные (полевые) интегральные структуры. Полупроводниковые ИС с биполярными транзисторами отличаются более высоким импульсным быстродействием (или рабочей частотой). Полупроводниковые цифровые ИС с униполярными транзисторами со структурой МОП отличаются наиболее высокой плотностью упаковки элементов и наименьшей стоимостью изготовления. Биполярные транзисторы увеличивают стабильность схемы в широком диапазоне температур, позволяют реализовать наибольшее быстродействие и создать схемы с лучшей нагрузочной способностью. Биполярные структуры более устойчивы к электрическим нагрузкам.
Технология униполярных транзисторов позволят добиваться лучших шумовых характеристик [1, стр. 23].
Анализ технического задания
1.1 Анализ технических требований
В этом параграфе рассмотрено расширенное техническое задание на проектирование полупроводниковой интегральной микросхемы генератора напряжения в интегральном исполнении, в котором раскрыто содержание следующих пунктов:
1. Наименование изделия: полупроводниковая интегральная микросхема усилителя с непосредственной связью.
2. Назначение: Усилителями с непосредственной связью называют электронные схемы, усиливающие переменное напряжение требуемой формы [2, стр. 293].
3. Комплектность: одна микросхема.
4. Технические параметры:
напряжение питания – 10В (постоянного тока).
5. Требования к конструкции:
внешний вид интегральной микросхемы должен отвечать современным требованиям к использованию в необходимом оборудовании;
габаритные размеры микросхемы мм;
6. Характеристики внешних воздействий:
окружающая температура +4010◦C; [12, стр. 384].
относительная влажность 30…85% при температуре +25◦C; [12, стр. 384].
вибрационные
нагрузки с частотой 10-2000Гц и максимальным ускорением 10-20g;
многократные удары длительностью 2-6мс с ускорением 75-150g;
линейные нагрузки (центробежные) с максимальным ускорением 25-2000g;
атмосферное давление – 85.0…106.7 кПа (650…80мм.рт.ст.). [12, стр. 384].
по климатическим условиям эксплуатации ей присваиваивается индекс – У(N) – умеренный.
7. Среднее время наработки до отказа должно быть не менее 15000 ч.
8. Тип производства – специализированный выпуск. [13, стр. 238].
1.2 Анализ электрической принципиальной схемы усилителя с непосредственной связью
Усилитель с непосредственной связью собран на транзисторах VT1, VT2 – прямой проводимости. Сигнал с входа поступает на разделительный конденсатор С1 и затем усиливаемый сигнал поступает на базу транзистора VT1. Смещенный сигнал поступает на RC фильтр, образующий отрицательную обратную связь. Далее сигнал поступает на транзистор VT2 и через фильтры включенные в коллекторную цепь поступает на выход схемы. Выходной сигнал снимают с резистора R7 и с общей точки минусовой шины.
1.3 Анализ элементной базы генератора напряжения
Параметры элементов схемы используемые при разработке ИМС приведены в таблицах 1.1 – 1.4.
Таблица 1.1 - Параметры транзистора КТ 805А [4, стр. 491,502,503,524]
Параметр |
Обозначение |
Единица измерения |
Данные о параметрах |
Максимально допустимый постоянный ток коллектора |
Ikmax |
А |
5 |
Максимально допустимый импульсный ток коллектора |
Ik, и max |
A |
8 |
Постоянное напряжение коллектор – эмиттер при определенном сопротивлении в цепи база - эмиттер |
Uкэ R |
В |
100 |
Постоянное напряжение коллектор – эмиттер |
Uкэ |
В |
100 |
Граничное напряжение биполярного транзистора |
U кэо гр |
В |
160 |
Сопротивление перехода база - эмиттер |
Rбэ |
кОм |
0.01 |
Постоянная рассеиваемая мощность коллектора |
Pк |
Вт |
30 |
Постоянный ток базы |
Iб |
А |
2 |
Постоянный ток эмитера |
Iэ |
А |
2 |
Максимально допустимое постоянное напряжение коллектор - база |
Uкб max |
В |
150 |
Максимально допустимое постоянное напряжение эмиттер - база |
Uэб max |
В |
5 |
Коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером: отношение постоянного тока коллектора к постоянному току базы |
h21э |
- |
15 |
Граничная частота коэффициента передачи тока в схеме с общим эмиттером: частота, на которой h21э транзистора (включенного по схеме с общим эмиттером) равен единицы |
fгр |
МГц |
10 |
Постоянный обратный ток коллектора |
Iкбо |
мА |
60 |
Постоянный обратный ток коллектор – эмиттер при определенном сопротивлении в цепи база - эмиттер |
Ikэr |
мА |
60 |
Постоянный обратный ток эмитера |
Iэбо |
мА |
100 |
Напряжение насыщения коллектор - эмитер |
Uкэ нас |
В |
2.5 |
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13