Разработка интегральных микросхем

Выбор и обоснование конструктивных и технологических матриалов


Для изготовления полупроводниковых интегральных схем используют в большинстве случаев пластины монокристаллического кремния p- или n- типа проводимости, снабженными эпитаксиальными и так называемыми      “скрытыми” слоями. В качестве легирующих примесей, с помощью которых изменяют проводимость исходного материала пластины, применяют соединения бора, сурьмы, фосфора, алюминия, галлия, индия, мышьяка, золота.  Для создания межсоединений  и контактных площадок используют алюминий и золото. Применяемые материалы должны обладать очень высокой чистотой: содержание примесей в большинстве материалов, используемых при изготовлении полупроводниковых микросхем, не должно превышать 10-5...10-9 частей основного материала.

Изменяя определенным образом концентрацию примесей в различных частях монокристаллической полупроводниковой пластины, можно получить многослойную структуру, воспроизводящую заданную электрическую функцию и до известной степени эквивалентную обычному дискретному резистору, конденсатору, диоду или транзистору. [1, стр. 24-25].

Необходимо отметить, что материал используемый для изготовления интегральной микросхемы  должен определятся параметрами зависящими от свойств материала, а именно: оптических, термических, термоэлектрических, зонной структуры, ширины запрещённой зоны, положения в ней примесных уровней и т. д. Немаловажное значение играют  электрические свойства полупроводникового материала: тип электропроводности, концентрация носителей заряда и  их подвижность, удельное сопротивление, время жизни неосновных носителей заряда и их диффузионная длина.

К основным требованиям, которым должны удовлетворять все материалы, используемые в производстве интегральных МС, относятся:

1.            стойкость к химическому воздействию окружающей среды;

2.            монокристаллическая структура;

3.            однородность распределения;

4.            устойчивость к химическим реагентам;

5.            механическая прочность, термостойкость;

6.            устойчивость к старению и долговечность.

Важным фактором, который должен учитываться при определении возможности применения какого-либо материала или технологического процесса производства ИМС, является его совместимость с другими применяемыми материалами [1, стр.24,25, 27].


Приведем параметры некоторых проводящих материалов и параметры некоторых полупроводниковых материалов.

Таблица 2.1 - Физические и электрические параметры проводящих материалов[6]


   Величина


Перечень материалов

Алюминий


Золото


Медь


Никель

Олово

Свинец

Серебро

Плотность,

103кг/м3

2,7


19.3

8.9

8,9

7,3

11,4

10.5

Удельная теплоемкость,

кДж/(кг*К)

0,92


0,13

0,38

0,5

0,25

0,13

0,25

Температура плавления,

ºС

660

1064

1083

1455

232

327

960

Удельная теплота плавления,

кДж/кг

380

66,6

175

-

58

25

87

Предел прочности ГПа

0,25

-

0,24

-

0.027

0,016

0,14

Удельное сопротивления ,10-8

Ом*м

2,8

-

1,7

7,3

12,0

21,0

1,6

Температурный коэффициент сопротивления,

*10-3 ºС-1

4,2

-

4,3

6,5

4,9

3,7

4,1

Модуль Юнга

*1010 Па

7

-

12

-

-

1,7

-


Таблица. 2.2 - Основные свойства некоторых полупроводниковых  материалов[5, стр. стр. 135]




Параметр и единица измерения

Полупроводниковые материалы

Кремний

Германий

Арсенид

галлия

Антимонид индия

Карбид кремния

Атомная молекулярная масса

28,1

72,6

144,6

118,3

40,1

Плотность,  г/см-3

2,.33

5,32

5,4

5,78

5,32

Концентрация атомов ∙10 22,  см-3

5

4,4

1,3

1,4

4,7

Постоянная решетки, нм

0,543

0,566

0,563

0,648

0,436

Температура плавления,°С

1420

937

1238

520

2700

Коэффициент теплопроводности, Вт/(см∙К)

1,2

0,586

0,67

0,17

0,084

Удельная теплоемкость, Дж/(г∙К)

0,76

0,31

0,37

1,41

0,62…0,75

Подвижность электронов, см2/(В∙с)

1300

3800

8500

77000

100..150

Подвижность дырок, см2/(В∙с)

470

1820

435

700

20…30

Относительная диэлектрическая проводимость

12

16

11

16

7

Коэффициент диффузии электронов, см2/c

33,6

98

220

2200

2,6…3,9

Коэффициент диффузии  дырок, см2/с

12,2

47

11,2

18

0,5…0,77

Ширина запрещенной зоны, эВ (Т = 300 К)

1,12

0,67

1,41

0,18

3,1



Таблица 2.3 - Ширина запрещенной зоны (в эВ) элементарных полупроводников (при  T=300K) [5, стр. 134]

Элемент

Э

Бор

1.1

Углерод (алмаз)

5.6

Кремний

1.12

Германий

0.0665

Олово

0.08

Фосфор

1.5

Мышьяк

1.2

Сурьма

0.12

Сера

2.5

Селен

1.8

Тейлур

0.36

Йод

1.25

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать