. (44)
Поэтому можно предположить, что существует два типа дополнительного тушения. В результате одного из них происходит уменьшение , а в результате второго происходит полное тушение триплетных состояний определённой части молекул донора. Молекулы донора, испытывающие тушение второго типа, не участвуют в излучении, и поэтому это тушение не влияет на .
В результате отжига снимается оба типа тушения. Снятие дополнительного тушения типа I приводит к увеличению , а следовательно и интенсивности за счёт изменения относительной заселённости триплетного уровня, а снятие дополнительного тушения типа II – только к увеличению интенсивности за счёт увеличения общего числа молекул донора, участвующих в излучении.
Увеличение интенсивности фосфоресценции донора в результате отжига позволяет отбросить из рассмотрения следующий возможный механизм увеличения числа молекул акцептора энергии, участвующих в излучении сенсибилизированной фосфоресценции. В процессе отжига образца система из термодинамически неустойчивого состояния переходит в более устойчивое, которое соответствует более равномерному распределению молекул примеси. В результате чего часть молекул акцептора, которые ранее не участвовали в переносе энергии, попадают в сферу обменных взаимодействий с молекулами донора и теперь участвуют в излучении. Очевидно, что при этом должно усиливаться тушение триплетных молекул донора энергии, в результате чего интенсивность и время затухания их фосфоресценции должны уменьшиться. Что противоречит экспериментальным результатам, приведенным выше.
4.4 ИССЛЕДОВАНИЕ ЗАКОНА НАКОПЛЕНИЯ ЧИСЛА МОЛЕКУЛ АКЦЕПТОРА, УЧАСТВУЮЩИХ В ИЗЛУЧЕНИИ, В ПРОЦЕССЕ ОТЖИГА
В 4.2 было показано, что увеличение интенсивности сенсибилизированной фосфоресценции в результате отжига образца происходит за счёт увеличения числа молекул акцептора, участвующих в излучении. Поэтому для выяснения физической природы процесса, приводящего к увеличению общего числа молекул акцептора, участвующих в излучении, необходимо было изучить закон их накопления в процессе отжига.
Обозначим интенсивность сенсибилизированной фосфоресценции после быстрого замораживания образца до 77 К через I(0). После отжига образца в течение определённого времени t при температуре Т и последующем охлаждении до 77 К интенсивность сенсибилизированной фосфоресценции обозначим через I(t). Тогда DI(t) = I(t) – I(0) – означает прирост интенсивности сенсибилизированной фосфоресценции в процессе отжига образца в течение этого времени.
По характеру кривых зависимостей относительной интенсивности сенсибилизированной фосфоресценции от времени отжига (рис. 17, 18) можно предположить, что при фиксированной температуре Т прирост интенсивности DI(t) в зависимости от времени отжига происходит по закону, определяемому экспонентой:
DI(t) = DI(¥){1-exp(-t/t)}, (45)
с характерным временем t, которое зависит от температуры отжига. DI(¥) - прирост интенсивности при длительном отжиге образца - t » t.
Экспериментально эта зависимость была проверена для пар – бензофенон-аценафтен в н.-октане и н.-декане и бензофенон-нафталин в н.-гексане, н.-октане и н.-декане. На рис. 23-27 в указанном порядке для данных соединений представлены графики зависимости [DI(t) - DI(¥)]/DI(¥) от t в полулогарифмическом масштабе.
Как видно из рисунков, экспериментальные точки хорошо укладываются на экспоненту (сплошная линия) с различными углами наклона, определяемыми температурой отжига. Ве личина, обратная тангенсу угла наклона прямых, соответствует характерному времени t процесса при данной температуре отжига.
В табл. 15 приведены значения t , определённые из представленных на рис. 23-27 зависимостей.
Как видно из таблицы, для всех исследованных систем повышение температуры отжига раствора приводит к уменьшению характерного времени процесса нарастания.
Таким образом, на основании этих экспериментальных данных можно утверждать, что прирост стационарной интенсивности сенсибилизированной фосфоресценции в процессе отжига хорошо описывается экспонентой (39) с характерным временем t, которое уменьшается при повышении температуры отжига.
Поскольку, как отмечалось выше, в отсутствие реабсорбции излучения интенсивность сенсибилизированной фосфоресценции I(t) пропорциональна концентрации триплетных молекул акцептора энергии nT(t), то для последних также можно записать:
DnT(t) = DnT(¥){1 - exp(-t/t)}, (46)
где DnT(t)- изменение концентрации триплетных молекул нафталина за время отжига t.
Таблица 15.
Характерное время t процесса нарастания числа одиночных молекул акцептора, участвующих в переносе энергии в процессе отжига.
| 
   Соединение  | 
  
  Растворитель | 
  
  Концентрация | 
  
   Температура отжига, К  | 
  
   t, мин.  | 
 
| 
   Бензофенон + аценафтен  | 
  
   н.-октан  | 
  
   СБ = 5×10-3 М СА = 5×10-3 М  | 
  
   161  | 
  
   3.06  | 
 
| 
   167  | 
  
   0.99  | 
 |||
| 
   173  | 
  
   0.38  | 
 |||
| 
   н.-декан  | 
  
   СБ = 10-3 М СА = 5×10-3 М  | 
  
   157  | 
  
   9.81  | 
 |
| 
   167  | 
  
   1.93  | 
 |||
| 
   177  | 
  
   0.47  | 
 |||
| 
   Бензофенон + нафталин  | 
  
   н.-гексан  | 
  
   СБ = 10-2 М СН = 3.5×10-3 М  | 
  
   161  | 
  
   4.65  | 
 
| 
   168  | 
  
   1.87  | 
 |||
| 
   н.-октан  | 
  
   СБ = 5×10-3 М СН = 5×10-3 М  | 
  
   161  | 
  
   7.41  | 
 |
| 
   166  | 
  
   3.54  | 
 |||
| 
   н.-декан  | 
  
   СБ = 5×10-3 М СН = 5×10-3 М  | 
  
   166  | 
  
   1.12  | 
 |
| 
   172  | 
  
   0.56  | 
 
В 4.2 было показано, что изменение концентрации триплетных молекул акцептора в процессе отжига сопровождается практически неизменной относительной заселённостью триплетного уровня - . Основываясь на выражении (42) было сделано заключение, что изменение DnT(t) происходит за счёт снятия концентрационного тушения. Поэтому аналогичный (46) закон характеризует и рост числа мономерных молекул акцептора, участвующих в переносе энергии.
Таким образом, для прироста в процессе отжига общего числа молекул акцептора, участвующих в переносе энергии можно записать:
Dn(t) = Dn(¥){1-exp(-t/t)}. (47)
Величина, обратная t, характеризует скорость прироста при данной температуре концентрации триплетных молекул акцептора энергии, q = 1/t , и называется константой скорости процесса [161].
Итак, прирост в результате отжига образца числа молекул, участвующих в излучении сенсибилизированной фосфоресценции происходит по экспоненциальному закону. Константа скорости этого процесса зависит от температуры. В дальнейшем необходимо было определить характер зависимости константы скорости указанного выше процесса от температуры.
4.5 ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АКТИВАЦИИ ПРОЦЕССА, ПРИВОДЯЩЕГО К УВЕЛИЧЕНИЮ ЧИСЛА МОЛЕКУЛ АКЦЕПТОРА, УЧАСТВУЮЩИХ В ИЗЛУЧЕНИИ
Возможными причинами увеличения после отжига концентрации молекул акцептора, участвующих в излучении, являются либо диффузионные процессы, приводящие к перераспределению имеющихся в растворе до отжига мономерных молекул, либо повышение числа мономерных молекул в растворе в результате распада более сложных образований. Хотя не исключены и другие процессы.
Выше было показано, что в твёрдом теле подобные физические и химические процессы обычно характеризуются Аррениусовской зависимостью константы скорости процесса от температуры:
q(Т) = q(¥) ехр (-Еак/RT) (48)
где q(¥) - предэкспоненциальный множитель, Еак- энергия активации процесса.
Соответственно для t :
t(Т) = (1/ q(¥)) ехр (Еак/RT). (49)
Представляло интерес экспериментально проверить эту зависимость.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23