Ядерные силы

               

где е± обозначает электрон или позитрон, v и veнейтраль­ные частицы (мюонное и электронное нейтрино) ; черточка над символом' обозначает античастицы.

Слабое взаимодействие мюонов с нуклонами подтверждается, в частности, тем, что  может захватываться ядрами на К-, L-, ... оболочки атома, при этом образуются мезоатомы Радиус мюонной орбиты в 207 раз меньше радиуса электронной орбиты, в результате чего для элементов с Z > 30 размеры К-орбиты мюона становятся сравнимыми с размерами ядер. При этом мюон большую часть времени проводит внутри ядер. Несмотря на это, не наблюдается резкого уменьшения средней продолжительности жизни мюона, что можно объяс­нить только слабым взаимодействием мюонов с нуклонами. Роль мюона в ядерных процессах неясна. Ясно, однако, что он не мо­жет играть роли кванта ядерного поля из-за слабого взаимодей­ствия с нуклонами.

В 1947 г. в составе космического излучения были обнару­жены частицы, сильно взаимодействующие с нуклонами. Их на­звали -мезонами . Год спустя они были получены искус­ственным путем бомбардировкой ядер различных элементов быстрыми (300 — 400 Мэв) -частицами, протонами и нейтро­нами. Сначала были обнаружены только заряженные -мезоны, которые распадаются по схеме

                     

Такой распад -мезона называется -распадом.

В 1950 г. были обнаружены  нейтральные -мезоны () , вернее, пары - квантов, возникающих при их распаде:

                                              

Энергия каждого кванта 70 Мэв. Спустя некоторое время было установлено, что существует и другой, на два порядка ме­нее вероятный тип распада:

                                    

Используя понятие изотопического спина, можно рассматри­вать +-, - и -мезоны как три различных зарядовых состоя­ния -мезона. Естественно поэтому предполагать, что изотопи­ческий спин -мезона равен единице и различные -мезоны со­ответствуют трем его проекциям на ось:

Такая связь -компоненты изотопического спина с различными -мезонами соответствует правилу (использованному и при рас­смотрении нуклонов): заряд частицы возрастает с ростом Т.

В начале 50-х годов были открыты К-мезоны.

В начале 60-х годов была открыта новая разновидность ча­стиц, получившая название резонансов (резонансных состояний). На сегодняшний день открыто более 100 резо­нансов, причем рост их числа не предвещает пока насыщения.


Классификация элементарных частиц


В 1932 г. в составе космического излучения был обнаружен позитрон, существование которого было предсказано теорией Дирака еще в 1929 г. Этот факт имел очень большое значение не только для подтверждения правильности теории Дирака, но и потому, что позитрон явился первой из открытых антича­стиц. Последующее открытие других античастиц привело к мысли о том, что законы физики симметричны относительно из­менения знака электрического заряда частицы. В результате этого возникло представление о зарядовом сопряже­нии, т. е. преобразовании, при котором частицы заменяются античастицами с одновременным изменением в уравнениях зна­ков всех зарядов, магнитных моментов и электромагнитныхполей, причем сами уравнения, описывающие поведение си­стемы, остаются неизменными.

Первоначальная интерпретация позитрона как дырки в сплошь заполненном электронном фоне в настоящее время оставлена. Нецелесообразность такого объяснения стала оче­видной после того как              в 1934 г. была создана релятивистская теория заряженных частиц со спином, равным нулю, примени­мая, в частности, к -мезонам. Из этой теории следовала возможность образования пар –-мезонов -квантами и аннигиляция этих пар, причем вероятность обоих процессов могла быть вычислена по формулам, отличающимся только постоян­ными множителями от соответствующих формул для электро­нов и позитронов. Поскольку же            -мезоны подчиняются стати­стике Бозе — Эйнштейна, к ним неприменим принцип Паули, необходимый для представления о заполненном частицами фоне. Таким образом, существование частиц и античастиц и характерные для них процессы рождения и аннигиляции не потребовали для своего объяснения концепции фона. Электрон и позитрон во всех отношениях являются совершенно равно­правными частицами.

Известные в настоящее время частицы могут быть разделены на четыре группы:

1. Фотон.

2. Легкие частицы (лептоны) с массой, меньшей массы -мезона (нейтрино двух типов, электрон, мюон). Все лептоны являются фермионами,    т. е. имеют спин ½  и подчиняются статистике Ферми — Дирака.

3. Мезоны и мезонные резонансы, к которым относятся -ме­зоны и более массивные частицы с целочисленным спином. Все они являются бозонами, т. е. подчиняются ста­тистике Бозе — Эйнштейна.

4. Барионы и барионные резонансы . К ним относятся нуклоны и более массивные частицы. Все они яв­ляются фермионами и имеют полуцелый спин.

После открытия позитрона, являющегося античастицей по отношению к электрону, возник вопрос: существуют ли антича­стицы у всех «элементарных» частиц?

Представление, что нейтрино имеет античастицу — антиней­трино, возникло почти одновременно с первыми попытками дать теоретическое объяснение электронного и позитронного распада (бета-распада ядер); однако только последние исследования двойного бета-распада дали право утвердительно ответить на этот вопрос.

В 1955 г. был открыт антипротон, а в 1956 г. было уста­новлено, что столкновения антипротона с протоном могут привести либо к их аннигиляции, либо к превращению антипротона в антинейтрон в результате обменного эффекта. Таким образом, протон р и нейтрон n имеют античастицы: антипро­тон и антинейтрон .

В связи с существованием античастиц у нейтрино и нейтрона возникает вопрос: чем отличается незаряженная частица от своей античастицы? Можно предположить, что отличие прояв­ляется в знаке магнитного момента. Однако это не всегда пра­вильно. Магнитный момент антинейтрона действительно должен быть противоположен по знаку магнитному моменту нейтрона; но этот критерий неприменим по отношению к нейтрино, магнит­ный момент которого равен, по-видимому, нулю. Значит, разли­чие между частицами и античастицами связано с каким-то иным свойством незаряженных частиц, изменяющимся при переходе к их античастицам.

Это свойство может быть установлено, если предположить, что все барионы характеризуются специфическим барионным зарядом A. Он равен +1 для барионов и —1 для антибарионов. Для барионного числа (заряда) выбрано обозначение, со­впадающее с обозначением массового числа, поскольку массо­вое число — это фактически барионное число ядра, состоящего из А протонов и нейтронов. Таким образом, можно считать, что основным отличием протона и нейтрона от соответствующих им античастиц является отличие в знаке барионного заряда, но не в знаке электрического заряда или магнитного момента. Соот­ветственно лептоны и антилептоны отличаются противополож­ными знаками лептонного заряда (числа), по модулю равного единице . Для мезонов барионный и лептонный, заряды равны нулю.

 Cведения о частицах, античастицах и их взаимных, превращениях значительно расширились за последние годы в результате открытия и интенсивного изучения мезонов, барио­нов и их резонансов. За последнее время появился ряд работ , в которых делаются попытки классифицировать наблюдаемые факты и явления в рамках феноменологической теории..

ГеллМанн  обратил внимание на существование следующих типов взаимодействия между элементарными частицами: (если не учитывать гравитации):

1. Сильные взаимодействия, возникающие между барионами, антибарионами и мезонами. Этими взаимодей­ствиями обусловлены ядерные силы между нуклонами и про­цессы образования мезонов и гиперонов при ядерных столкнове­ниях. Однако учет одних лишь сильных взаимодействий следует рассматривать как первое приближение.

2. Электромагнитные взаимодействия, возни­кающие при воздействии фотонов на заряженные частицы (вто­рое приближение).

3. Слабые взаимодействия, проявляющиеся при и -распадах и обусловливающие, кроме того, медленные рас­пады гиперонов и мезонов (третье приближение).

В этой теории нуклоны, антинуклоны и -мезоны считаются обычными частицами, в отличие от «странных» частиц, к кото­рым отнесены К-мезоны и гипероны. Свойства обычных частиц изучены лучше свойств странных частиц, поэтому мы сначала ограничимся рассмотрением процессов, происходящих с учетом первых.

При учете только сильного взаимодействия справедлив за­кон сохранения изотопического спина: каждой частице или системе частиц соответствует изотопический спин, являющийся точным квантовым числом. Состоянию с изотопи­ческим спином Т отвечает кратность вырождения 2Т+1, при­чем каждая компонента такого мультиплета соответствует опре­деленному зарядовому состоянию частицы или системы частиц. Как обычно, будем считать, что заряд возрастает с увеличе­нием Т. Центры мультиплетов, т. е. средние заряды, различны для разных мультиплетов. Для нуклонного дублета средний за­ряд (полусумма зарядов протона и нейтрона) равен +1/2.  Для антинуклонного дублета —1/2, а для -мезонного триплета он равен нулю.

Заряд Z системы частиц определяется соотношением

                                     ,

Центр мультиплета, соответствующего та­кой системе, равен А/2. Преобразование зарядового сопряжения меняет знаки Z, T и А.

При учете электромагнитного взаимодействия изотопический спин теряет свойства точного квантового числа и вырождение по изотопическому спину снимается. Так возникает различие между массами частиц, находящихся в разных зарядовых со­стояниях.

Процессы, в которых проявляются только сильные взаимо­действия, называются быстрыми. К ним относятся процессы, происходящие при столкновении нуклонов с большой энергией, например образование -мезонов, распад резонансных состоя­ний, образующихся при рассеянии мезонов барионами, и т. д. Эти процессы протекают за промежутки времени порядка   10-22 сек.

Процессы, обусловленные электромагнитным взаимодей­ствием, называют электромагнитными. К ним относится, например, распад °-мезона на два -кванта. Характерное время электромагнитных процессов – порядка 10— 10 сек.

Наконец, процессы, идущие под влиянием только слабых взаимодействий, например лептонный распад, и требующие «больших» промежутков времени (~10 сек), называются медленными.


Литература

1.     В.В Маляров «Основы теории атомного ядра» Издательство «Наука»,    М. 1967г.

2.     И.В. Савельев «курс общей физики» том 3. Издательство «Наука»,         М. 1982 г.

3.     И.В Корсунский «Атомное ядро». Издательство «Наука», М, 1968г


Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать